Gv How Know if a rarional no: 1, P, g EI, 2 = 0 18 repeating or Terminating without dividing RepeatingX Ex: 29 Pechaan 25 2º.52 is of the form 2x5" Ex: 37 where mineW. 2×3-13 Ex: 91 (pritory  $\Rightarrow \frac{.91}{.44} = \frac{13}{2} = 6.5 \text{ }$ mmating KAAM KI BAAT : Every Integer 12 a Ra Number B'wz : 2 = 2 form P, 2EI, 2=0. 0=0 IRRATIONAL NO: 8 Neither Repeating nor Terminating Decimals. Ex: J= +414 -vision By J3= 1.73205-5 = 2.236 - -O is not defined e ~ 2.718 - - -In Mathematics T ~ 3.14 ----





Let P(x) be a polynomial of degree  $\ge 1$  and 'a' is any real number. If P(x) is divided by (x - a), then the remainder is P(a).

| $P(x) = x^{2} - 3x^{2} + 3x + 5$ $x^{2} - 2x + 1  Quotient$ $x - 1  x^{2} - 3x^{2} + 3x + 5$ $divisor  \frac{x^{2} - x^{2}}{-2x^{2} + 3x}$ $-\frac{2x^{2} + 3x}{-2x^{2} + 3x}$ $\frac{-2x^{2} + 3x}{-2x^{2} + 3x}$ $\frac{-2x^{2} + 3x}{-2x^{2} + 3x}$ $\frac{-2x^{2} + 3x}{-2x^{2} + 3x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | - 3x2+3x+5.<br>hendivided by X-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{1}{2} \frac{1}{3} \frac{1}$ |         | x=0<br>$f = (-1) \cdot 1 + 6 = 5$<br>$f = (-1) \cdot 1 + 6 = 5$ |
| т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Divisor | Remainder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| X-a=0 P(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X-a     | P (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (x=g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X+Q     | P(-a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2x+3=0 $x+a=0x=-3 _{2} (x=-a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2×+3    | P(-3/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3X-2    | P(5 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### Remark

- i. p(-a) is remainder on dividing p(x) by (x + a)
- ii.  $p\left(\frac{b}{a}\right)$  is remainder on dividing p(x) by (ax b)
- iii.  $p\left(\frac{-b}{a}\right)$  is remainder on dividing p(x) by (ax + b)
- iv.  $p\left(\frac{b}{a}\right)$  is remainder on dividing p(x) by (b ax)

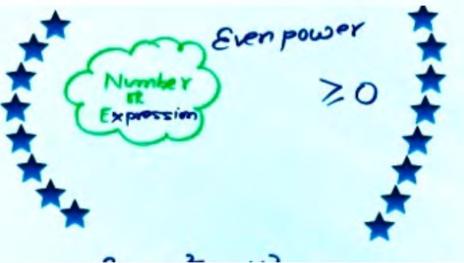
$$[\because \mathbf{x} + \mathbf{a} = \mathbf{0} \Rightarrow \mathbf{x} = -\mathbf{a}]$$
$$[\because \mathbf{a}\mathbf{x} - \mathbf{b} = \mathbf{0} \Rightarrow \mathbf{x} = \frac{\mathbf{b}}{\mathbf{a}}]$$
$$[\because \mathbf{a}\mathbf{x} + \mathbf{b} = \mathbf{0} \Rightarrow \mathbf{x} = -\frac{\mathbf{b}}{\mathbf{a}}]$$
$$[\because \mathbf{b} - \mathbf{a}\mathbf{x} = \mathbf{0} \Rightarrow \mathbf{x} = \frac{\mathbf{b}}{\mathbf{a}}]$$

| FACTOR THM.                                                                     |
|---------------------------------------------------------------------------------|
| Remainder in Disguise.<br>Theorem.                                              |
| Let P(x) be a poly of degree > 1 & if                                           |
| $f(\alpha) = 0 \implies x - \alpha \text{ is } \alpha \text{ factor of } P(x) $ |
| Conversely if (x-a) is factor of P(x) then P(a)=0.                              |

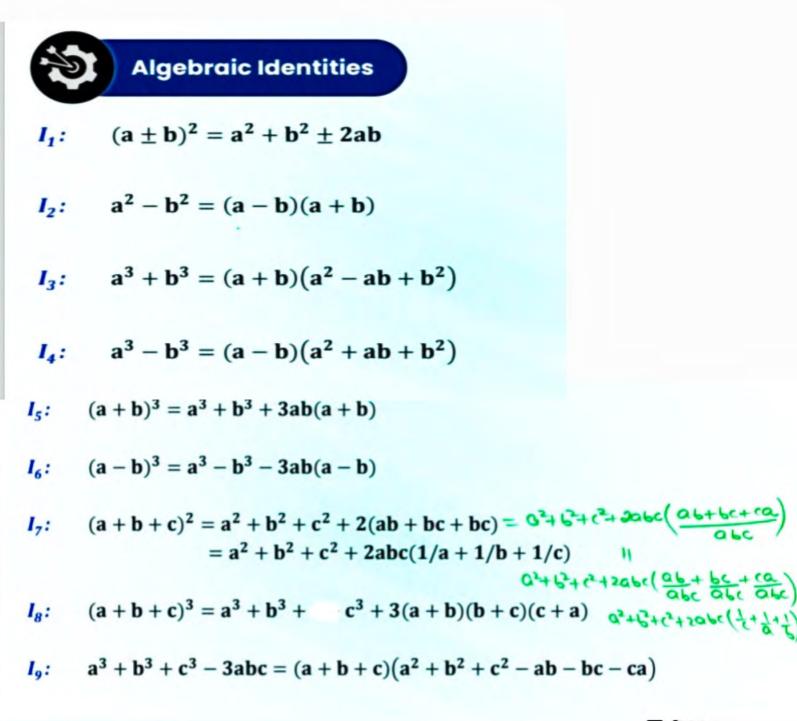
| Name of Exponent Rules   | Rule                                                                                                                                |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Zero Exponent Rule       | $a^0 = 1$ (Where $a \neq 0$ )                                                                                                       |  |  |
| Identity Exponent Rule   | $a^1 = a$                                                                                                                           |  |  |
| Product Rule             | $a^m \times a^n = a^{m+n}$                                                                                                          |  |  |
| Quotient Rule            | $a^m/a^n = a^{m-n}$                                                                                                                 |  |  |
| Negative Exponents Rule  | $a^{-m} = 1/a^m; (a/b)^{-m} = (b/a)^m$                                                                                              |  |  |
| Power of a Power Rule    | $(a^m)^n = a^{mn}$                                                                                                                  |  |  |
| Power of a Product Rule  | $(ab)^m = a^m b^m, (a^p b^q)^\alpha = a^{p\alpha} b^{q\alpha}$                                                                      |  |  |
| Power of a Quotient Rule | $(a/b)^m = a^m/b^m$                                                                                                                 |  |  |
| Fractional Rule          | $(a/b)^{m} = a^{m}/b^{m}$<br>$a^{1/n} = \sqrt[n]{a}; a^{m/n} = (a^{m})^{1/n} = \sqrt[n]{a^{m}} = (a^{1/n})^{m} = (\sqrt[n]{a})^{m}$ |  |  |

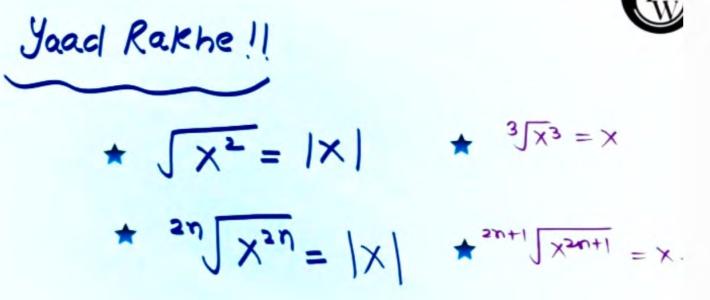
# An Important Result

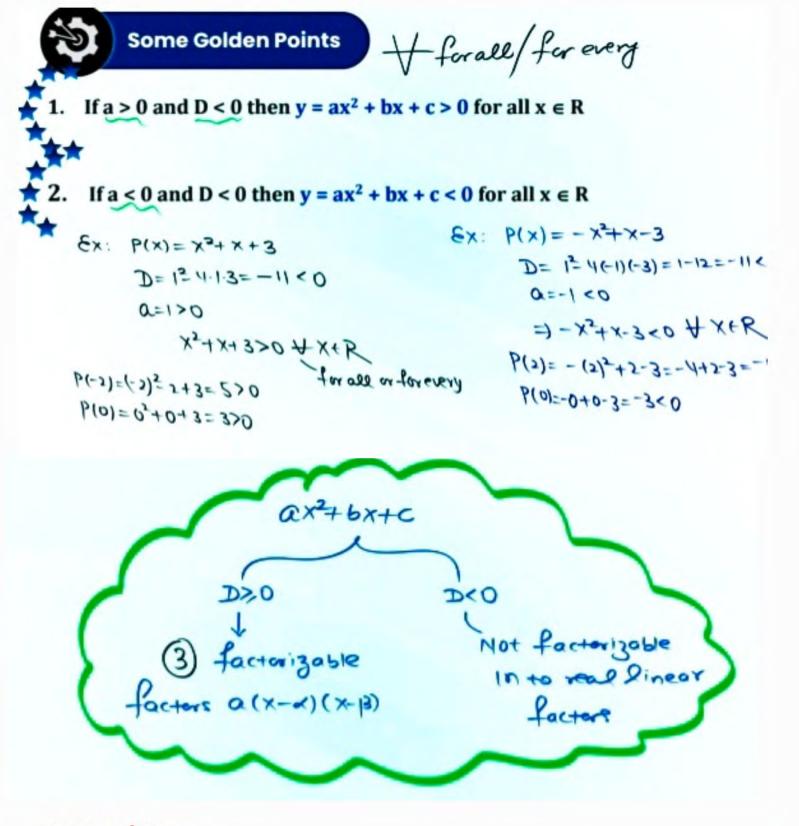
| a + 6 | +c=ab-bc-ca 30 +a                     | , 6, C F R |
|-------|---------------------------------------|------------|
|       | ality holds ie                        |            |
| ****  | $a^3+b^2+c^2-ab-bc-ca=0$<br>H $a=b=c$ | ***        |


## An Important Result

★ If x, y ∈ R &  $x^2 + y^2 = 0 \implies x = 0 \implies y = 0$ 


**Generalization:** 


If  $a_1 a_2 \dots a_n \in R$  then  $a_1^2 + a_2^2 + \dots + a_n^2 = 0$  then  $a_1 = a_2 = \dots = a_n = 0$ 


Ex: find x sy 
$$4x^{2}+4x+1+y^{2}-6y+9=0$$
, x, y f R  
 $(2x)^{2}+2\cdot 2x\cdot 1+1^{2}+y^{2}-2\cdot 3\cdot y+3^{2}=0$   
 $(2x+1)^{2}+(y-3)^{2}=0$   
 $2x+1=0 = y -3=0$   
 $x=-y_{2} = y = 3$ .



(Any positive real number) Any real power





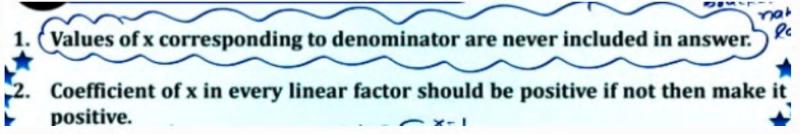


#### Inequalities

- B1: We can add (or subtract) any number 'k' on both sides of inequality. Doing this will not change the sign of inequality.
- B2: We can multiply (or divide) any non-zero number 'k' on both sides of inequality and sign of inequality will change according to sign of 'k' that is
  - If k > 0 then sign of inequality will remains same,
  - If k < 0 then sign of inequality will get reversed.</p>

- B3 :Squaring (raising even power both side) is only allowed when both sides<br/>of inequality are non negative.3>23>23>23>23>23>23>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>23>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>33>3
- B4: Raising both sides to odd power is fine.  $\underbrace{\text{Ex: } 372}_{\text{$272$}} \text{$6x:-27-3$}_{\text{$272$}} \text{$6x:-27-3$}_{\text{$272$$

 $\begin{cases} x: 5>-2 \\ us>-8 \\ us>-8 \\ di>-3/8 \\ di>-3/$ 


Inequalities can be multiplied provided both sides are positive and have same sign of inequality, but they can not be divided.

#### **Method of Intervals**

#### **Steps Involved**

- 1. Make one side of inequality 0.
- 2. Factorize the non zero side in to linear factors 🛫
- 3. Put each linear factor equal to zero & find value of x.
- 4. Plot all values of x on a number line.
- Start with a positive sign on the extreme right part & then place negative, positive signs alternately.

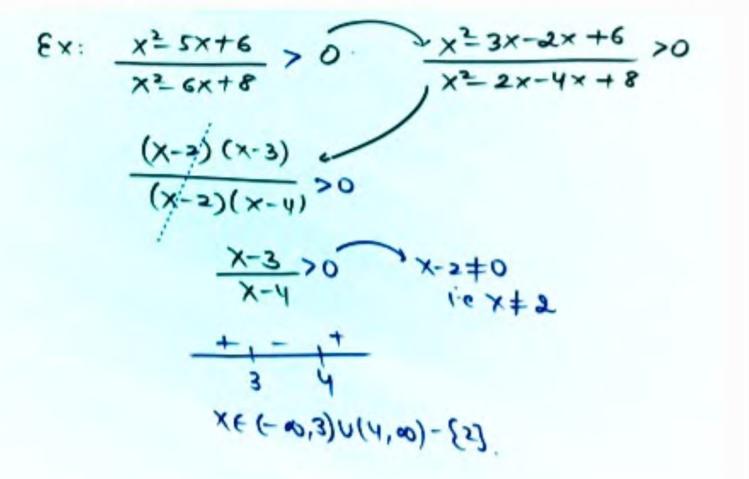
### **Important Point to Note**



G

Ex: 5>-2) Ex: 3>-7)SBS 2574)SBS 9749X

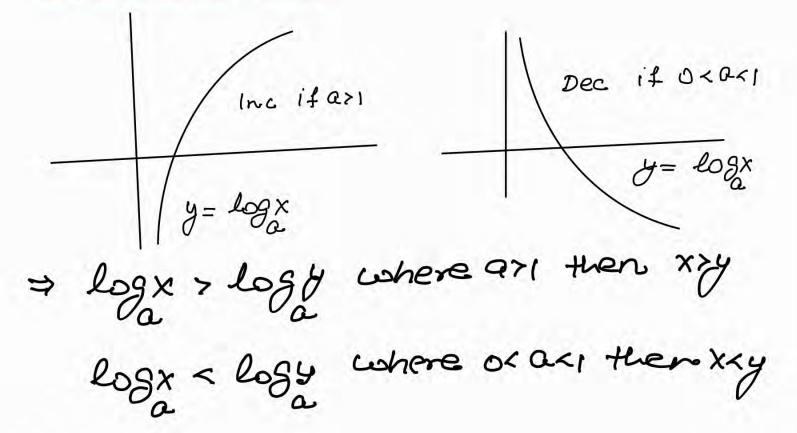
#### **Case of Repeated Factors**



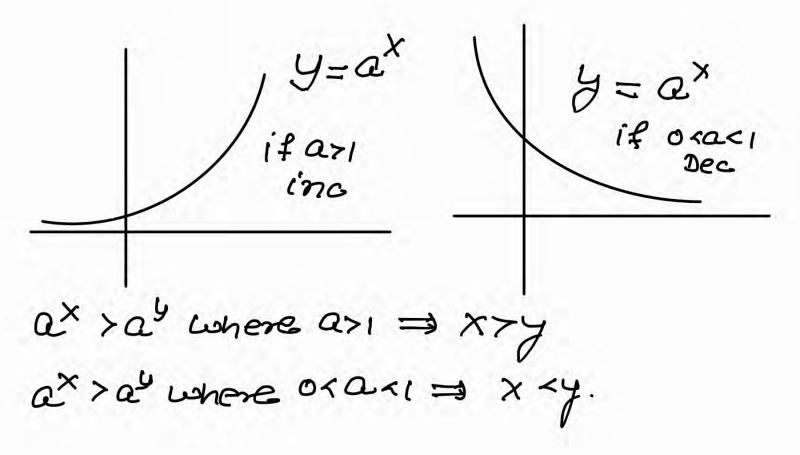

#### **B**<sub>1</sub>: Every odd integral power of a linear factor is treated as 1.

: In case of even power of any factor, first we assume that it is always positive. So we delete it from the inequality but in the end we make a direct check at that value of x where the deleted factor is zero.

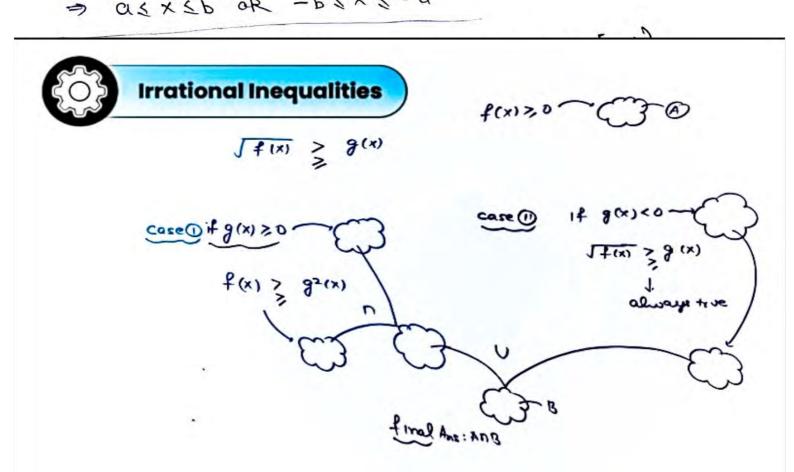
#### In case if a factor is eliminated

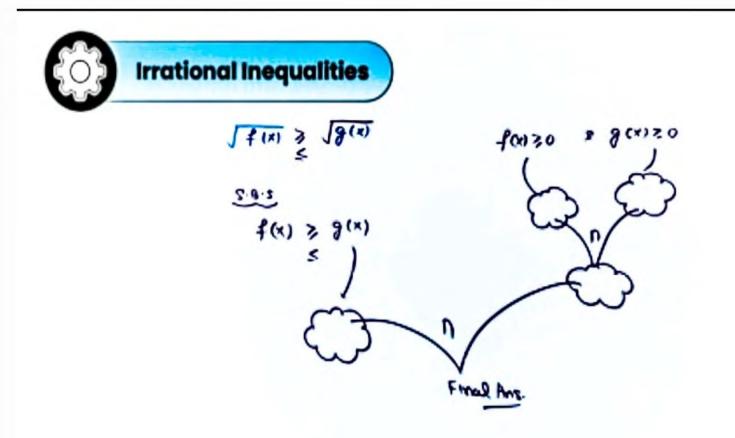

In this case the factor that is cancelled in the Numerator & Denominator, it is put not equal tozero & it's roots are never included in answer

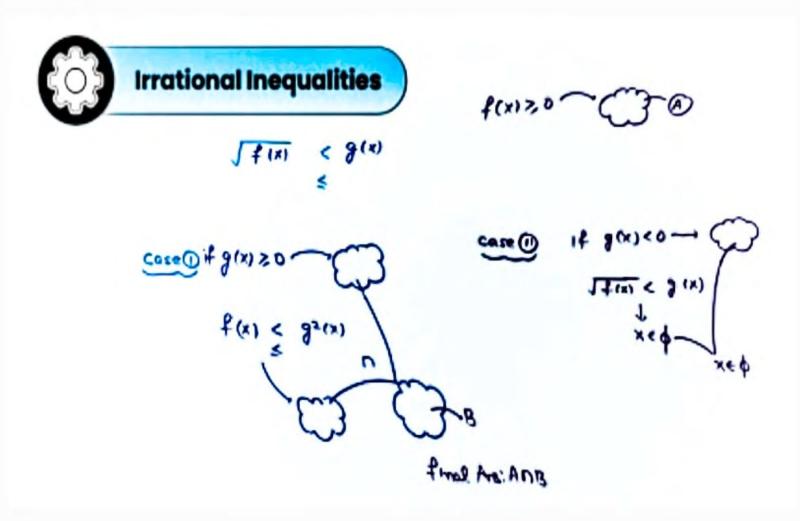


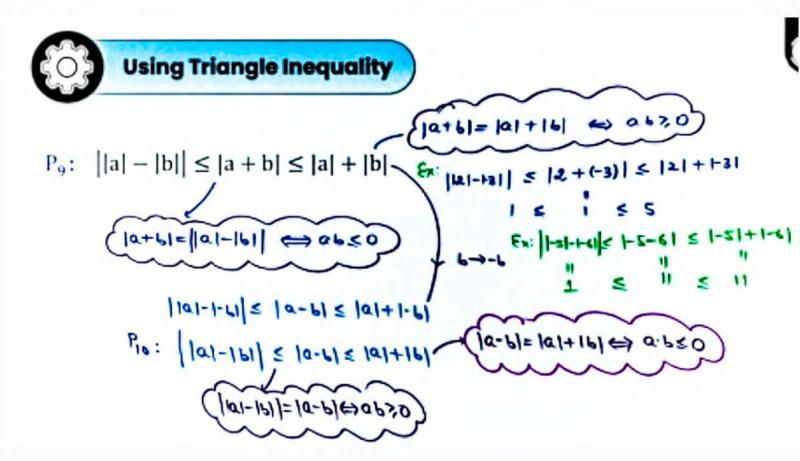

whenever an equ \* 5/2=1×1 1\* consists of two or \*TX+ 1 > A , XER+ more variables try to \* |Y|= (x, xx0) make perfect squares \* ]x+ 1 <- 2, x ER \*> 027,0,0 ER the for In an inequality we can add or subtract any no. From both \* IFanazz-somer then =100g +> If we multiply or divide both  $a_1^2 + b_2^2 + \dots + a_n^2 = 0$  then <ides by any mat. the no: sign  $a_1 = a_2 = \cdots = a_n = 0$ of inequality remains same \* coeff of xin each linear to the multiply or divide both sides by any -ve no: sign factor should the of inequality reversed \* ax2+bx+c \* a=1 (a= 0) 0°-+rot-define +> if D: (0, a 70 + ax2+bx+c70 +xER \* 574 (2) 25716 iF plo, aco Agar dono sides non-the - axetbx+c co +xER 2 +> DTO then quad is factorizable ho then we can square 7 into real linear Factors 2  $*(3-x)^{2}=(x-3)^{2}$  $ax^{2} + bx + c = a(x - a)(x - b)$ but (4-x) = (x-4)3 x, B= - b= J b=-49 + log N denotes power to which \*  $\log_a b = \frac{\log_a b}{\log_a a}$ should be raised in order to \*logob = togba get \* logan is defined if aro, a=1, N70 \*  $\alpha^{\log_a N} = N_1 \log_a^a = 1, \log_a^a = -1, \log_a^a = -1 \\ \int_a^{\log_a N} = N_1 \log_a^a = 1, \log_a^a = -1, \log_a^a = -1 \\ \int_a^{\log_a N} = N_1 \log_a^a = 1, \log_a^a = -1, \log_a^a = -1 \\ \int_a^{\log_a N} = N_1 \log_a^a = 1, \log_a^a = -1, \log_a^a = -1 \\ \int_a^{\log_a N} = N_1 \log_a^a = 1, \log_a^a = -1, \log_a^a = -1 \\ \int_a^{\log_a N} = N_1 \log_a^a = 1, \log_a^a = -1, \log_a^a = -1 \\ \int_a^{\log_a N} = N_1 \log_a^a = 1, \log_a^a = -1, \log_a^a = -1 \\ \int_a^{\log_a N} = N_1 \log_a^a = 1, \log_a^a = -1, \log_a^a = -1 \\ \int_a^{\log_a N} = N_1 \log_a^a = 1, \log_a^a = -1, \log_a^a = -1 \\ \int_a^{\log_a N} = N_1 \log_a^a = -1, \log_a^a = -1 \\ \int_a^{\log_a N} = N_1 \log_a^a = -$ \* log av mx = x loy m \* logal = 0 \* log 1 is not defined oz it can not give definite value + lag az . log az log ay --Jaj Jaz Jaz  $t \log_a(m,n) = \log_a(m) + \log_a(n)$ (=- log an = log an. Jani) Jai \* loga (m) = loga(m) - loga(n) \* 10gam2 = X-10gam

Scanned with CamScanner

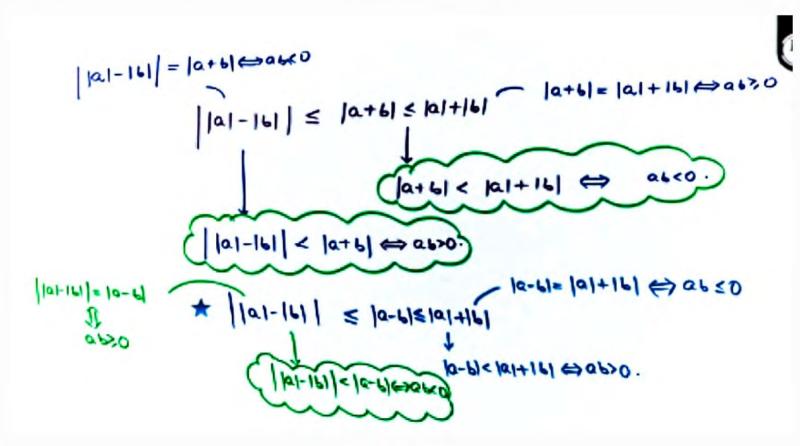

#### Logarithmic Inequalities

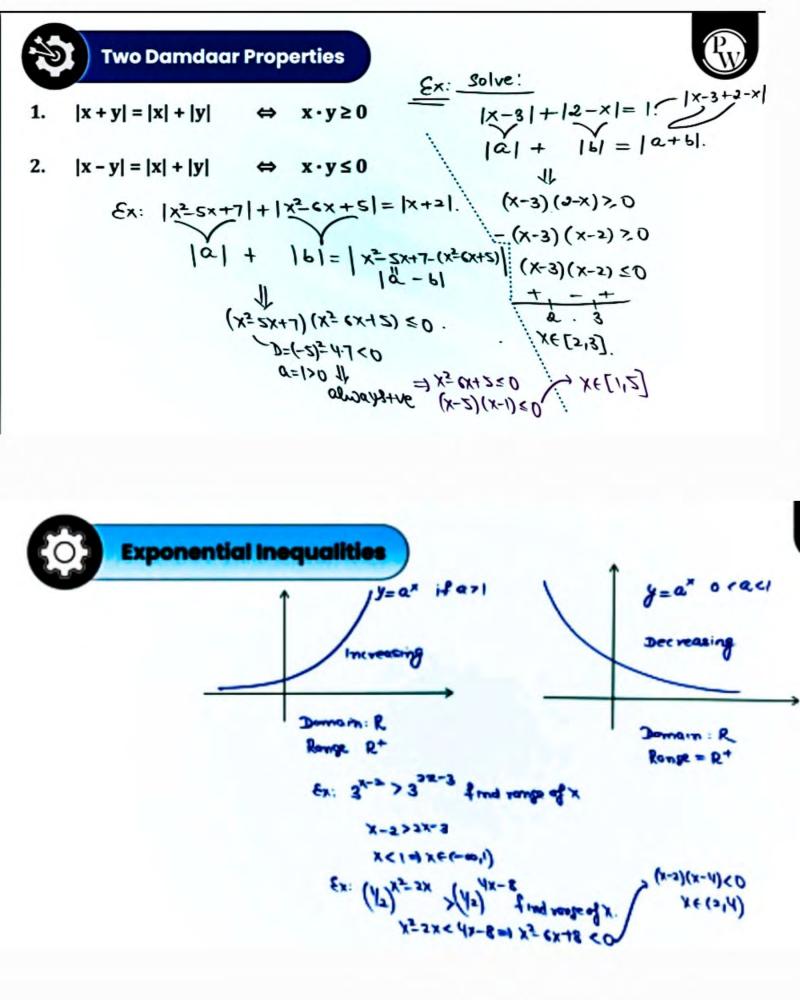




#### **Exponential Inequalities**




\* Incleasing function Kisi bhi inequality mai lagae  
HI BEISHI Koi Forak mahi Padtaa  
\* Decrease Function kisi bhi inequality mai lagae  
AT BETSHI sign of inequality is reversed  
Inc. Eq: 
$$a^{x}(art)$$
,  $log_{a}(x)(aro)$   
Dec. Eq:  $a^{x}(art)$ ,  $log_{a}(x)(aro)$   
Dec. Eq:  $a^{x}(art)$ ,  $log_{a}(x)(aro)$   
 $ki denotes distance blu 0 & x on numberline
eq:  $1-3l=3 = 3$   
 $-3$   
 $+ [-x]=|x|$ ,  $|x|^{2}=x^{2}$ ,  $|xy|=|x|\cdot|y|$ ,  $|x|=\frac{|x|}{|y|}$ ,  $y=0$ ,  $\sqrt{x^{2}z}[x]$   
 $+ 2n[x^{2n}=|x|, x^{2n+1}]x^{2n+1} = x$   $+ |x| px$   $\rightarrow |x|rx \Rightarrow xro$   
 $+ 4x| sa, aert \Rightarrow xe[-a;a] + kir a, acres
 $+ a \le 1x| \le b$ ,  $a \ge bert$   $\Rightarrow xe(-\infty, -a] \cup [a, \infty)$$$ 








# Very important points to Note





**Characteristic & Mantissa** no: to a given base always has two logarithm of any integral part called characteristic and a fractional part called Mantissa ic e Inter Ex: log 16 = 1,0 / 9 222i Integral port part 0 = azzitmentCharacteristic=4 Ex: find characteristic of log 17 clearly: 24 < 17 < 25 ~ 4 < log 17 < 5 ~ log 17 = 4 characteristic= 4 N KIKAHAANI Ex: log 1 = 0, log 1 = 0 Ex: logo is not defined in real feloil IF OCNCI characteristic  $\Rightarrow -1 \le \log_{10} N < 0 \Rightarrow \log_{10} N = -1 + f$ 1≤ N < I -N= 0.689, 0.976  $\downarrow \leq N < \downarrow \implies -2 \leq \log_{10} N < -1 \implies \log_{10} N = -2 + f$ N= 0.078,0.09705 ¥ -2 N= .0018,0.00965 \* tan = N<tao = -3 < RogN <-2 = RogN =-3+4 -3 If OCNCI, logN has characteristic= -No: of O's Immediately to right of decimal mN before a +1 steats tight transfinges \*\*\*

OQ N KIKAHAANI Ex: log 1 = 0, log 1 = 0 Ex: logo is not defined in reals fe [oi) characteristic 1 N71  $* 1 \le N < 10 \implies 0 \le \log N < 1 \implies \log N = 0 + f$ 0 N= 1.63, 9.85 N= 95.02, 88.55 \* 10 < N < 100 = 1 < 000 N<2 =) log N = 1+f N= 110.23,999.25 \* 100 ≤ N< 1000 => 2 ≤ log N<3 => log N=2+f L, 19 N>1, logN has characteristic = (NO: of significant digits to left) - 1 gdecimal in N ++++++++ folgettonal Part & [0,1] \* logaN = I + (ManHssa) Integer port ( charactertstic) negative if N7.1 characteristic of log N \* 109 2=0-3010 = (No: of significant digits before) decimal - 1 \* 100 3= 6.4771 \* log107=0-8451 FORNEI T = 3.14 characteristic of lay N= (No. af zeros immediately after decimal before (Bignificant digits starts +1) 1.57 37/2 2 4.7

\*\*\*\*\* X, Q, 64I \* Q SX 26 No: of possible values of X=6-5 \*\*\*\*\*\*\*\* se eak end -a point answer mai shoamil hotaa har , x,a,beI \* acxsb No: of possible values of X=6-2 \* Q S X S6, X,Q, bEI No: of possible values of x= b-a+1 acxeb, a,b,xEI × No: of Values of X= b-a-1 1 = <u>c</u> a+6 Q-6 - C-C C+0 prnendo Dividendo atb = cta CR. ant - End if 30x+2B=13 find a, B = 4 18 p -2 = B-1 G1 01 k,a,theb that = = =  $\frac{p_{-1}}{2} = \frac{3u-6+2p-2}{3+4}$ k, a 2+ k 2 6, + K 3 C arthton -- $\frac{o^{1}}{\sigma^{1}} = \frac{o^{2}}{\rho^{1}} = \frac{c^{2}}{c^{2}} =$ = 13-8 = 5/7 03+5++(+x=10 1 B=1+542=1013

### The End