JEE 2026

Mathematics

Sequence and Series

A Properties of G.P

Question Practice

Record of previous lecture

$$\frac{y_{Y}}{y_{Y}}$$
1. For the sequence a, ar, ar², ar³, arⁿ⁻¹ = ℓ

$$T_{n} = \underbrace{\alpha^{\gamma^{n-1}}}_{1=\gamma}, S_{n} = \underbrace{\alpha(\gamma^{n-1})}_{1=\gamma} \propto \underbrace{\alpha(1-\gamma^{n})}_{1=\gamma} \gamma = \underbrace{(r_{n-K+1})}_{1=\gamma} \operatorname{term} \operatorname{free}$$
(From end) $T_{k} = \underbrace{\beta \cdot (\gamma_{Y})^{K-1}}_{1=\gamma} = \underbrace{(n-K+1)}_{1=\gamma} \operatorname{term} \operatorname{free}$
2. For G.P. $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots$

$$a_{2} \cdot a_{7} = a_{3} \cdot \underbrace{\alpha_{6}}_{1=q} = a_{5} \cdot \underbrace{\alpha_{4}}_{1=q}$$

$$a_{9} \cdot a_{7} = a_{8} \cdot \underbrace{\alpha_{8}}_{1=q} = a_{6} \cdot \underbrace{\alpha_{10}}_{1=q}$$

=1, If r=1, 8= ma.

om beginning

RECO of previous lecture 3. In a G.P., $T_{r+k} \cdot T_{r-k} = \frac{T_r}{r}$

A. If we multiply each term of G.P. by 'k' then it is still a _____ with common ratio some as initial G.P

5. If we divide each term of a G.P. by k, $k \neq 0$ then it is still a _____ with common ratio some as intial G.P.

6. If we multiply corresponding terms of two G.P.s we get a $\frac{G.P}{2}$ with common ratio = $\gamma_1 \gamma_2$

7. If divide corresponding terms of two G.P.s we get a ______ with common ratio $= \frac{r_1}{r_2}$

Product of equidistant terms from beginning & ends is <u>Constant</u> & is equal to 8. product of first & last term.

RECO of previous lecture

- 9. $S_{\infty} = a + ar + ar^2 + \dots + \infty =$ _____ provided $r \in (-1, 1)$
- 10. If r > 1 then $a + ar + ar^2 + \dots + \infty$, $a \neq 0$ is <u>Divergent</u>

11.
$$S_n = a + ar + ar^2 + \dots + ar^{n-1}$$

$$= \frac{\alpha (\gamma^n - 1)}{\gamma^n - 1} \text{ if } r \neq 1$$
$$= \underline{\gamma \alpha} \text{ if } r = 1$$

12. If each term of a G.P. is raised to same power k then resulting sequence is $\frac{G P}{With common ratio}$

13. If in a G.P. the 3rd term is 4 then the value of product of first five terms is _____ $\overline{b}=ar^2=y$ $P=a_1\cdot a_2\cdot a_3\cdot a_3\cdot a_4\cdot a_5$ = a . ar . or2. or3 ary

> $= Q^{\Sigma} \gamma^{10}$ $=(032)^{5}=y^{5}=1024$

State True or False 1. No term of a G.P. can be 0 (\top)

2. Four numbers in G.P. can be taken as $\frac{a}{r^3}$, $\frac{a}{r}$, a, $ar^3(F)$ $\frac{a}{r^3}$, $\frac{a}{r}$, or, or^3 .

3. If $r \ge 1$ then the series $a + ar + ar^2 + ar^3 + \dots \infty$, $(a \ne 0)$ is divergent. (T)

4. If $r \le 1$ then the series $a + ar + ar^2 + ar^3 + \dots \infty$, $(a \ne 0)$ is convergent. (F)

sahi

- Oscillator

HOMEWORK Discussion.

QUESTION [JEE Mains 2023 (29 Jan)]

Let $\{a_k\}$ and $\{b_k\}, k \in N$, be two G.P.s with common ratios r_1 and r_2 respectively such that $a_1 = b_1 = 4$ and $r_1 < r_2$. Let $c_k = a_k + b_k$, $k \in N$. If $c_2 = 5$ and $c_3 = \frac{13}{4}$ then $\sum_{k=1}^{2} c_{k} - (12a_{6} + 8b_{4}) \text{ is equal to}$ $G \cdot P, \quad 4, \quad 4r_{1}, \quad 4r_{1}^{2}, \quad 4r_{1}^{3} - - - (r_{1} < r_{2})$ $M \quad G \cdot P, \quad 4, \quad 4r_{2}, \quad 4r_{2}^{2}, \quad 4r_{2}^{3} - - - (r_{1} < r_{2})$ CK=aK+bK $c_{1} = a + b_{2} = 5$ M3 By observation $C_3 = G_3 + b_3 = 13/4$ $(r_1+r_2) = S$ $4\gamma_{1}^{2} + 4\gamma_{2}^{2} = 13 | 4$ 41,+41,=5 $\gamma_1^2 + \gamma_2^2 = 13|16.$ $(4r_1)^2 + (4r_2)^2 = 13$ 441=2, 445=3 Y,= 1/2 Y2= 3 4

KTK 03

 $\Psi(\mathbf{y}_1 + \mathbf{y}_2) = \mathbf{S} \cdot$ Y1+Y2=54 x1+x2 + 5x1x2 = 52 10 $\frac{13}{16} + 3x_1x_2 = \frac{3}{25} = 3(1)x_2 = 3$

$\frac{5}{1}, \frac{1}{1}, \frac{1}{2} = \frac{3}{8}$

4

-3 = 0

5

QUESTION [JEE Mains 2025 (22 Jan)]

S 03

Suppose that the number of terms in an A.P. is $2k, k \in N$. If the sum of all odd terms of the A.P. is 40, the sum of all even terms is 55 and the last term of the A.P. exceeds the first term by 27, then k is a

equal to:

$$a_{2} + a_{4} + a_{6} + - - + a_{2k} = 55$$

 $a_{1} + a_{3} + a_{5} + - - + a_{2k-1} = 40$
 $a_{1} + a_{3} + a_{5} + - - + a_{2k-1} = 40$
 $a_{2} - a_{1} + (a_{4} - a_{3}) + (a_{5} - a_{5}) + - + (a_{5} - a_{$

codd number ceven number

-azk-1

 $q_1 = 2$ q = 2d=2] d=3

QUESTION [JEE Mains 2021 (27 July)]

If $\log_3 2$, $\log_3(2^x - 5)$, $\log_3\left(2^x - \frac{7}{2}\right)$ are in an arithmetic progression, then the value of x is equal to

$$x = 2,3$$

 $y = 2,3$
 $y^{2} = 2^{2},3 = -1$ $\log(2^{2},5)$ becomes
in Real

undefined

QUESTION [JEE Mains 2025 (4 April)]

Consider two sets A and B, each containing three numbers in A.P. Let the sum and the product of the elements of A be 36 and p respectively and the sum and the product of the elements of B be 36 and q respectively. Let d and D be the common differences of A.P.'s in A and B respectively such that D = d + 3, d > 0. If $\frac{p+q}{p-q} = \frac{19}{5}$, then p - q is equal to $A = \{a - d, a, a + d\} \frown a - d + a + a + d = 36 \implies a = 12$ $B = \{A - D, A, A + D\} \frown A - d + A + A + d = 36 \implies A = 12.$ 540 $P = (a - d) \cdot a (a + d) = (12 - d) \cdot 12 \cdot (12 + d)$ 450 В $q = (A-D) \cdot A \cdot (A+D) = (12-D) \cdot 12 \cdot (12+D) = (9-d) \cdot 12 \cdot (15+d)$ 600 D=d+3P+2 = 19P-9 5 630

Ans. A

QUESTION [JEE Mains 2024 (31 Jan)]

Let 2nd, 8th and 44th terms of a non-constant A.P. be respectively the 1st, 2nd and 3rd terms of a G.P. If the first term of the A.P. is 1, then the sum of its first 20 terms is equal to -

$$\begin{array}{c} (A) & 990 \\ (A) & 990 \\ \hline T_{2} = 1 + d \\ \hline T_{3} = 1 + 7d \\ \hline$$

QUESTION

If a, b, c, d, e be 5 numbers such that a, b, c are in A.P.; b, c, d are G.P. & $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P. then: a, b, c, d, e Prove that a, c, e are in G.P. t.t.t mAP Prove that $c = (2b - a)^2/a$ A·P If a = 2 & e = 18, find all possible values of b, c, d. (iii) 2b=a+c (ii) Q = 2(l)(ii)26=a+c e=18 C=26-Q, (2=ae=36 $c=\pm 6$. rom() C²=ae 14 (= 6 $C^2 = Q + C$ $(2b-a)^{2} = ae$ 26= a+c cte. 6= (39-0 C3+C2e = QCe b = 4d= 2. e. 18 $c^2 = Qe =) q_i c_i e_i q q_i q_i p_i$ d=q

** ASRQ**

For the two positive numbers a, b, if a, b and $\frac{1}{18}$ are in a geometric progression, while $\frac{1}{a}$, 10 and $\frac{1}{b}$ are in an arithmetic progression, then 16a + 12b is equal to a, be R^t a, b, $\frac{1}{18}$ G·P \longrightarrow $b^2 = a \cdot \frac{1}{18}$ $\frac{1}{a}$, $\frac{10}{5}$ A·P \longrightarrow $20 = \frac{1}{a} + \frac{1}{5}$.

QUESTION [JEE Mains 2023 (15 April)]

Let A₁ and A₂ be two arithmetic means and G₁, G₂, G₃ be three geometric means of two distinct positive numbers. Then $G_1^4 + G_2^4 + G_3^4 + G_1^2 G_3^2$ is equal to :

$$(A_{1} + A_{2})^{2}G_{1}G_{3}$$

$$(A_{1} + A_{2})G_{1}^{2}G_{3}^{2}$$

$$(A_{1} + A_{2})G_{1}G_{3}$$

$$(A_{1} + A_{2})G$$

= a+b

 $g_{2}b_{1}, g_{2}^{2} = g_{1}g_{3} = ab.$

 $G_1G_3(A_1+A_2) = G_1G_3(a+b)^2$

stapt Gr (9+B+abtab)

QUESTION

If m is the A.M. of two distinct real numbers l and n (l, n > 1) and G₁, G₂ and G₃ are three geometric means between l and n, then $G_1^4 + 2G_2^4 + G_3^4$ equals

$$\mathcal{L}, \mathcal{A}_1, \mathcal{A}_2, \mathfrak{m} \longrightarrow \mathcal{A} \cdot \mathcal{P}$$

 $\mathcal{L}, \mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3, \mathfrak{m} \longrightarrow \mathcal{G} \cdot \mathcal{P}$

QUESTION [JEE Mains 2021 (26 Aug)]

Let a_1 , a_2 ,, a_{10} be an A.P. with common difference -3 and b_1 , b_2 ,, b_{10} be a G.P. with common ratio 2. Let $c_k = a_k + b_k$, k = 1,2, ..., 10. If $c_2 = 12$ and $c_3 = 13$, then 10 c_k is equal to

Taho3

Ans. 2021

QUESTION

Let a, b, c > 1, a^3 , b^3 and c^3 be in A.P., and $\log_a b$, $\log_c a$ and $\log_b c$ be in G.P. If the sum of first 20 terms of an A.P., whose first term is $\frac{a+4b+c}{2}$ and the common difference is $\frac{a-8b+c}{10}$ is - 444, then abc is equal to : $Q^{3}, 6^{3}, c^{3} \land P \Longrightarrow 26^{3} = a^{3} + c^{3}$ logb, loga, logc are in G.P 343 A 216 $\frac{(\log \alpha)^2}{(\log \alpha)^2} = \frac{1}{\log \alpha}$ $\frac{1}{(\log \alpha)^3} = 1$ Jem () & () 343 C 9P3=503 p=o 125 Q=b=C D

 $(\log a)^2 = \log b \cdot \log c = \log c$

for an A:P

$$T_{1} = \frac{\alpha + 4b + c}{3} = 2\alpha$$
common diff = $\frac{\alpha - 8b + c}{10} = -\frac{6\alpha}{10} = -\frac{3}{5}\alpha$

$$S_{20} = -4444$$

$$\frac{20}{2} (4\alpha + 19 \cdot (-\frac{3}{5})\alpha) = -4444$$

$$S(4\alpha - \frac{57}{5}\alpha) = -222$$

$$S \cdot \frac{1}{5} \frac{37\alpha}{5} = \frac{1}{222}$$

$$\alpha = 6.$$

Problems Involving AGP

QUESTION

$(|-x|) S(|-x|) = \frac{1}{|-x|}$ $S = \frac{1}{(1-x)^3}.$ $(3) S = |^2 + 2^2 x + 3^2 x^2 + 4^2 x^3 + 5^2 x^4 + --\infty$

QUESTION [JEE Mains 2024 (27 Jan)]

If $8 = 3 + \frac{1}{4}(3 + p) + \frac{1}{4^2}(3 + 2p) + \frac{1}{4^3}(3 + 3p) + \dots \infty$, then the value of p is $S = 3 + (3+P) \cdot \frac{1}{4} + (3+2P) \cdot \frac{1}{4^2} + \frac{1}{4^3} (3+3P) + - -\infty ,$

5=8

QUESTION [JEE Mains 2023]

If $(20)^{19} + 2(21)(20)^{18} + 3(21)^2(20)^{17} + ... + 20(21)^{19} = k(20)^{19}$, then k is equal to $S = 1.(20)^{19} + 2.21.(20)^{18} + 3.(21)^{2}.(20)^{17} - -+19.20!(21)^{19} + 20.(21)^{19}$ C.P C.R = $\frac{21}{20}$ $|\cdot 21.(20)^{18} + 2.21^{2}.20^{17} + \dots + 18.20.21^{8} + 19.21^{19} + 21^{20}$ $\frac{2}{20}S =$ $-\frac{s}{20} = \left(20^{19} + 21 \cdot 20^{18} + 21^2 \cdot 20^7 + - - + 20 \cdot 21^8 + 21^{19}\right) - 21^{20}$ $= 50_{10} \frac{\frac{50}{51} - 1 = \frac{50}{1}}{\left(\left(\frac{50}{51}\right)_{50}^{2} - 1\right)} - 50_{50}^{2} = 50_{50} \left(\frac{50_{50}}{50_{50}} - \frac{50_{50}}{50_{50}} - \frac{50_{50}}{50_{50}}\right)$

QUESTION [JEE Mains 2014]

If $(10)^9 + 2(11)^1(10)^8 + 3(11)^2(10)^7 + \dots + 10(11)^9 = k(10)^9$, then k is equal to

Ans. C

QUESTION

The sum of the infinite series $1 + \frac{2}{3} + \frac{7}{3^2} + \frac{12}{3^3} + \frac{17}{3^4} + \frac{22}{3^5} + \dots$ is equal to :

QUESTION [JEE Mains 2023 (11 April)]

For $k \in \mathbb{N}$, if the sum of the series $1 + \frac{4}{k} + \frac{8}{k^2} + \frac{13}{k^3} + \frac{19}{k^4} + \dots$ is 10, then the value of k is

QUESTION [JEE Mains 2022]

Let S = 2 + $\frac{6}{7}$ + $\frac{12}{7^2}$ + $\frac{20}{7^3}$ + $\frac{30}{7^4}$ + \cdots . Then 4S is equal to

QUESTION

 $S = 1 + \left(1 + \frac{1}{5}\right) \cdot \frac{1}{2} + \left(1 + \frac{1}{5} + \frac{1}{5^2}\right) \cdot \frac{1}{2^2} + \left(1 + \frac{1}{5} + \frac{1}{5^2}\right) \cdot \frac{1}{2^2} + \left(1 + \frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^2}\right) \cdot \frac{1}{2^2} + \frac{1}{5^2} + \frac{1}{5^2}$ $\frac{1}{2} + (1+\frac{1}{5}) \cdot \frac{1}{2^2} + (1+\frac{1}{5}+\frac{1}{5^2}) \cdot \frac{1}{2^3} + - -\infty$ <u>S</u>= $\frac{S}{2} = 1 + \frac{1}{5} \cdot \frac{1}{2} + \frac{1}{5^2} \cdot \frac{1}{2^2} + \frac{1}{5^3} \cdot \frac{1}{2^3} + \dots - \infty$ $\frac{S}{2} = 1 + \frac{1}{10} + \frac{1}{10^2} + \frac{1}{10^3} - \frac{1}{10^3}$ $\frac{q}{q} = 1 \cdot \left(\frac{1}{1-1}\right) = \frac{10}{9}$ 8=209

Ans. 2175

Geometrical Problems

QUESTION [JEE Mains 2024 (1 Feb)]

If three successive terms of a G.P. with common ratio r(r > 1) are the lengths of the sides of a triangle and [r] denotes the greatest integer less than or equal to r, then 3[r] + [-r] is equal to

a, ar, ar2

a+ar >ar2 artar2 7a aton2 >00 SE

Ans. 1

QUESTION [JEE Mains 2024 (8 April)]

Let ABC be an equilateral triangle. A new triangle is formed by joining the middle points of all sides of the triangle ABC and the same process is repeated infinitely many times. If P is the sum of perimeters and Q is be the sum of areas of all the triangles formed in this process, then:

$P^2 = 72\sqrt{3}Q$
$P^2 = 36\sqrt{3}Q$
$P = 36\sqrt{3}Q^2$
$P^2 = 6\sqrt{3}Q$

a12 $P = \frac{3a}{2} + 3a/4 +$ $A = \frac{\sqrt{3}}{\sqrt{2}} (\alpha|_{2})^{2} + \sqrt{3}|_{\sqrt{2}} (\alpha|_{\sqrt{2}})^{2} + \frac{\sqrt{3}}{\sqrt{2}} (\alpha|_{8})^{2} + \frac{\sqrt{3}}{\sqrt{2}} + \frac{\sqrt{3}}{\sqrt{2}} (\alpha|_{8})^{2} + \frac{\sqrt{3}}{\sqrt{2}} + \frac{\sqrt{3}}{\sqrt{2}} (\alpha|_{8})^{2} + \frac{\sqrt{3}}{\sqrt{2}} +$

=)0=12A

Ans. B

QUESTION [JEE Mains 2021]

Let A_1, A_2, A_3, \dots be squares such that for each $n \ge 1$, the length of the side of A_n equals the length of diagonal of A_{n+1} . If the length of A_1 is 12 cm, then the smallest value of n for which area of A_n is less than one, is

QUESTION [JEE Mains 2024 (31 Jan)]

A software company sets up m number of computer systems to finish an assignment in 17 days. If 4 computer systems crashed on the start of the second day, 4 more computer systems crashed on the start of the third day and so on, then it took 8 more days to finish the assignment. The value of m is equal to:

up to 25 terms

Some Golden Problems

QUESTION [JEE Mains 2021]

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence such that $a_1 = 1$, $a_2 = 1$ and $a_{n+2} = 2a_{n+1} + a_n$ for all $n \ge 1$. Then the value of 47 $\sum \frac{a_n}{8^n}$ is equal to n=1Qn+2 = 2Qn+1 + Qn. $\frac{a_{n+2}}{g_n} = \frac{a_n \cdot a_{n+1}}{g_n} + \frac{a_n}{g_n}$ lly $\sum_{n=1}^{\infty} \frac{q_{n+2}}{g_n} = \sqrt{2} \sum_{n=1}^{\infty} \frac{q_{n+1}}{g_n} + \sum_{n=1}^{\infty} \frac{q_n}{g_n}$ $\sum_{n=1}^{\infty} \frac{8n}{8n} = 16 \sum_{n=1}^{\infty} \frac{8n+1}{8n+1} + \sum_{n=1}^{\infty} \frac{8n}{8n}$

a = ,2

 $64(S-\frac{a_1}{8}-\frac{a_2}{64})=16(S-\frac{a_1}{8})+S$ $645 - 8a_1 - a_2 = 165 - 2a_1 + 5$ $47S. = 6a_1 + a_2 = 7.$ $S = \frac{7}{47}$ $47 \sum_{m=1}^{m} \frac{a_m}{m} = 47s = 7 Ams$

QUESTION [JEE Mains 2022]

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence such that $a_0 = a_1 = 0$ and $a_{n+2} = 2a_{n+1} - a_n + 1$ all $n \ge 0$. 8 Then $\sum \frac{a_n}{7^n}$ is equal to: n=26 A 343 В 216 8 C 343 $\frac{49}{216}$ D

Tah 13

Sabse Important Baat

Sabhi Class Illustrations Retry Karnay hai...

Solution to Previous TAH

QUESTION [JEE Mains 2025 (3 April)]

TAH

Let a_1, a_2, a_3, \dots be a G.P. of increasing positive numbers. If $a_3a_5 = 729$ and $a_2 + a_4 = \frac{111}{4}$, then $24(a_1 + a_2 + a_3)$ is equal to

2.6 May 2025 100 100-000 2000-101
$\frac{TAH-01}{03.95} = 729$
$a_{2}^{2} \cdot a_{3}^{2} = 729$ $a_{2}^{2} \cdot r_{6}^{6} = 729$
$a_2 + a_4 = 111$
$ar + ar^3 = \frac{4}{11}$ $\frac{-a_4}{-a_7} = \frac{ar^3}{-ar^3}$
$ar(1+r^2) = \underbrace{111}_{4}$ $\underbrace{a_2}_{4} = g^2$
$a_{7} + 27 = \underline{111} \qquad \qquad a_{2}$ $a_{4} = a_{2} \times 3^{2}$
$ar = 3/4 \qquad \qquad aq = \frac{3}{4} \times 7^2 = 1$
$\begin{bmatrix} a_2 = 3\\ 4 \end{bmatrix} \qquad \qquad$
$ax \sigma = \frac{3}{4}$ $\gamma^2 = \frac{2}{24} \times 4$
$a = \frac{3}{4r} = \frac{3}{4x62} \qquad [r=6]$
$\begin{bmatrix} a=28 \end{bmatrix}$
$2^{4}(a_{1}+a_{2}+a_{3}) = 24(a+a_{7}+a_{7}^{2})$
=24a(1+3+32)
$=24 \times 1$ (1+6+36) 8 (1+6+36)
Shot on moto g52 = $3(43)$ RAUNAK VATS = 12.9 (B)

®

QUESTION [JEE Mains 2023 (29 Jan)]

Let a_1, a_2, a_3 , be a G.P. of increasing positive numbers. If the product of fourth and sixth terms is 9 and the sum of fifth and seventh terms is 24, then $a_1a_9 + a_2a_4a_9 + a_5 + a_7$ is equal to

TAH BY 72=7 $\alpha = 3$ 49 **ANKUSH** =) a a x 2 + a x a x 2 a x 2 + a x 4 + a x 6 a2 8 + a3 812 + a2 840 + a86 E I a'(22)"+ a3(22)6 + a422) + a(24)2 + a(24)2 + a(24)3 =) 312 (7) + 13 13 (7)6+ JE + 3 X 7K 13 R 49 49 + 27 + 3+ 2) => 60 => 1018 = 60

FERATELY STORE ENT THE PI

 $\begin{array}{l} q_{9} \cdot q_{6} = 9 \\ q_{7}^{3} \cdot q_{7}^{5} = 9 \\ q_{7}^{2} \gamma_{8}^{8} = 9 \\ \boxed{q_{7}^{9} = 3} \end{array}$

 $\begin{array}{c} a \times 7 \times 7 = 3 \\ a = \frac{3}{49} \end{array}$

 $a_{7} + q_{7} = 24$ $a_{7}^{4} + a_{7}^{6} = 24$ $a_{7}^{4} (1 + \gamma^{2}) = 24$ $3(1 + \gamma^{2}) = 24$ $1 + \gamma^{2} = 8$ $\gamma^{2} = 7$ $\boxed{\gamma}^{2} = \sqrt{7}$

 $a_{1}a_{2} + a_{2}a_{4}a_{3} + a_{5} + a_{7}$ $24 + a \cdot a_{7}^{8} + a_{7} \cdot a_{7}^{3} \cdot a_{7}^{8}$ $24 + a^{2}\gamma^{8}(1 + a_{7}^{4})$ $a_{2}4 + 9(1 + 3)$ 24 + 9x4 = 24 + 36 = 60

The state		attended and the second s
	(Jee mains	Page
A REAL	(&)	Let ar, 92,93 - be a bre of increasing
	Sec. March	Positive numbers & the product of fourth
	C A News	and sixth terms is g and the sum of fifth
	14094	and seventh forme is 24, then.
	AN STRAN	9198 + 929499-+ 95 + 92 is ereal to Take
1	14 2	so is a first that the set prove the set
-	1	solving 1-
1		The second provide the second se
1		94,96=9 96+97=24
-	S. M. Same	- 973,985=9 1 94r+91r=24
ALC: NO		92 - 8 = 9 94+96 = 24
ALC: NOT	1 interes	$(ar^{4})^{2} = 9$
Sec. 1	f 2. 3 :	11 974 = 32 , Ar3+9r5 = 24
	Sectorial g	11: ary = 3 - () [1: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E	1 × 1 × 1	9741+976=241
		$97^{4}(1+r^{2}) = 24 - (ii)$
	We and there is	
	the - Stand of	divide equation Dianda 1
S.		a deal to a set the still and the still the set of the set
1		ary (1+2) = 24 - 11
	the state of the state of the	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	S. 281 Y 40	and property the set of the set of the
	的这个主义的性	1 - 1 - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 -
	朝鮮になってもない。	3
	BALL MARKEN	$r^2 = 24 - 3$ $(qr^2)^2 = 3$
		$3 a(7)^2 = 3$
1		82 = 21 = 7 / a= 31
Non-Man		$\boxed{\sigma^2 = 7}$

Date. Page alast 929493 +95+97 9.98 + ar. 9, 3.98 + 9,4 + 976 92 (x2)4 + 93 (x2)6 + a(x2)2 + a(x2)3 $9(7)^2 + 9(7)^3$ 7) 6+ 13 +13 2 (7-)45 49 149 49 72-+3 (7)8 + 3 27 x7 9 72 28 9+27+3+21 14 5.1 All In March 60 An

QUESTION [JEE Mains 2024 (8 April)]

78

96

91

84

B

D

TAH

Ans. C

In an increasing geometric progression of positive terms, the sum of the second and sixth terms is $\frac{70}{3}$ and the product of the third and fifth terms is 49. Then the sum of the 4th, 6th and 8th terms is equal to:

03 TAH-0 and an -> +ve increasing Grop a2+ a6= 703. aza5 = 49 a4+a6+a8 = ?) az+a6=70/3 apr. apr. = 49 yar+ar5=703 arob=49 $arc(1+r^4) = 703$ $arc^3 = 7$ $\frac{1+104}{7} = \frac{70}{3x7} = \frac{10}{3}$ 3+3pt=1000 30-4-1000+3=0 304-90-00+3=0 (3rd-1) (vx-3)=0 E=re & er=3 for inc G.P) ay + as + as = an3 + ano5 + ano7 = ap3(1+pr+ro4) $= \pm (1 + 3 + 3^{\vee})$ = 7 X13 (Ano O

QUESTION [IIT-JEE 1987]

If a, b, c, d and p are distinct real numbers such that $(a^{2} + b^{2} + c^{2})p^{2} - 2(ab + bc + cd)p + (b^{2} + c^{2} + d^{2}) \le 0$, then a, b, c, d $a^{2}p^{2} - 2apbt b^{2} + b^{2}p^{2} - 2bcp + c^{2} + c^{2}p^{2} - 2cdp + d^{2} \le 0$ are in A.P. A $(ap-b)^{2} + (bp-c)^{2} + (cp-d)^{2} \leq 0$ But $(ap-b)^2 + (bp-c)^2 + (cp-d)^2 \ge 0$ ≥ 0 ≥ 0 ≥ 0 are in G.P. $(ap-b)^{2}+(bp-c)^{2}+(cp-d)^{2}=0$ are in H.P. ap-b= bp-c=cp-d=0 satisfy ab = cd $b = \frac{a}{p} = \frac{1}{c} = \frac{a}{c}$ Q, b, c, d are in G.P.

 $(a^{+}b^{+}c^{-})p^{-} = 2(ab+bc+cd)p + (b^{+}c^{+}d^{-})$ apt bpt + cpt - 2abp-2bcp-2cdp ≤ 0 + 6x+cx+dx20 (arpr-2abp+b) + (5pr-2bcp+cr) + (crpr-2cdp+d) 50 (ap-b)~+ (bp-c)~+ (cp-d)~≤0 ap-b=0 / bp-c=0 / cp-d=0 ap-b=0 / $b/c=y_p$ / $c/d=y_p$ $b_{a} = p$ $c_{b} = p$ $d_{c} = p$ $b_{a} = 9_{b} = d_{c} = p$ =D ob, C,d 9m are

$$\frac{\# ASR 0}{12h - 04} = \frac{3}{(8^2 + b^2 + c^2)p^2 - 2(8b + bc + cd) + pR + (b^2 + c^2 + d^2) \leq 0}{3^2 p^2 + b^2 + c^2 p^2 - 2abp - 2bcp - 2cdp + b^2 + c^2 + d^2 \leq 0} = \frac{a^2 p^2 - 2abp + b^2) + (b^2 p^2 - 2bcp + c^2) + (c^2 p^2 - 2cdp + d^2) \leq 0}{(2p - b)^2 + (bp - c)^2 + (cp - d)^2 \leq 0} = \frac{(2p - b)^2 + (bp - c)^2 + (cp - d)^2 \leq 0}{2p - b - c} = \frac{a}{2p - b} = \frac{b}{2p - b} = \frac{a}{2p - b} =$$

AH-09 $(a^{2}+b^{2}+c^{2})p^{2}-2(ab+bc+cd)p+b^{2}+c^{2}+d^{2}50$ $(a^{2}p^{2}+b^{2}-2abp)+(b^{2}p^{2}+c^{2}-2bcp)+(c^{2}p^{2}+d^{2})$ $(2p-b)^{2}+(bp-c)^{2}+(cp-d)^{2}\leq 0$ ap-b=bp-c=cp-d=0ap=b bp=c cp=d $P = \frac{b}{a}$ $P = \frac{c}{b}$ $P = \frac{d}{c}$ $\frac{b}{a} = \frac{c}{b} = \frac{d}{c}$ $b^2 = ac$ $c^2 = bd$ a, b, c - Bip b, c, d -> GIP a, b, c, d -> GIP B Shot on moto g52 RAUNAK VATS

 $23^2 = 529$

AH- 05 Common Rattor Ym, mE-N Let finst lorm of G.P -> Ce 74= 500 $a(Mm)^{3} = 500$ $M_{3} = 500 = 0 = 500 \text{ m}^{3}$ S67 55+1 S= < S + 4 56-5571 SJ-SGL'A F7 46 TG71 4m6 2 3 a/m571 500 < 1/2 500 71 1000 × m3 5007m 10 <m m~<500 $m = \{1, 2, \dots, 22\}$ $m = \{11, 12, \dots, 22\}$ me of 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

4=500 rah-os $\gamma = \frac{1}{3}$ S7 < S6 + 1/2 S6755+1 S7-S6< 1/2 $a \times 1$ $m^3 = 500$ 56-5371 $a = 500 \text{ m}^3$ a(v-1) _ a(v-1) >1 $\frac{a(r^{7}-1)}{(r-1)} - \frac{a(r^{6}-1)}{(r-1)} < \frac{1}{2}$ $(\gamma-1)$ $(\gamma-1)$ az6-a-az5+a>1 ar7-a-ar6+a < 3 (8-1) (r-1)ars(r-1) >1 ar6(r-1) < 1/2 8-1 (8-1) a85>3] ar6<1/2 500 m × 1 >1 m 52 500m3×1<1 $\frac{500}{m^2} > 1$ $\frac{500}{m^3} < \frac{1}{2}$ m2<500 00° [m3 > 1000 $\gamma n = 11, 12, 13, 14, 15, 16, 17, 18, 19, 7$,20,21,22 no. of values of m=12 mg

Solution to Previous KTKs

KTK 01

The number of terms common to the two A.P.'s 3, 7, 11,, 407 and 2, 9, 16,, 709 is

$$\begin{array}{c}
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\
 (1) \\$$

Pw

1	
KTK-02	$A = 2n \in [100, 700] \Pi N$
	multiple, of 3 :
	$102, 105, 108, 101, 114 639 \rightarrow 3, = 102$
	$\partial n = n + (n - 1)d \rightarrow d = 3$
	699=102+3d-3
	n = 600 = 300
	$\frac{2}{d=12}$
	Mothple of 1 :
	$100, 104, 108, 112 700 \rightarrow \partial_1 = 100$
	$a_n = a_+(n1)d - d_2 = 4$
	700 = 100 + 421-4
	$nd = 604 \Rightarrow 151$
	4 Diobathakur
	multiple of 12 :
_	108,190,199 696
	696 = 108 + (n-1)12
	n= 600 = 50
	12
	Divisible by 3 2 4 7 300 +151-50 => 301
	not divisible by 3 f 4 > 600 - 301 +1
	J = 300 (c)

Rw

QUESTION [JEE Mains 2024 (6 April)]

KTK 02

For $A = \{n \in [100, 700] \cap \mathbb{N} : n \text{ is neither a multiple of 3 nor a multiple of 4}\}.$ Then the number of elements in A is

KTR-02	(2)
ME E100,700], where ME N	prost.
Total natural number on th	uls I
Interval PS = 600+1	geen and a second se
* $multiple = 1001$. w
102,105 699	2
102 + (n-1)3 = 699	
n - 1 = 597 = 199	
(n=200) 3	-1
* multiple of 4 100,104 700	+-
≠ 100+ (n-1)4= 700	-
n-1 = 600 = 150	_
(n=15)	-
multiple of 12	-
108,120 696	-
108 + 12(n-1) = 696	
$n - 1 = \frac{588}{12} = 49$	
(n=50) multiple of	
Nois of Total , 3 on 4.	_
= 200 + 151 - 150	-
Nors of Nerther multiple of 3 nor 4	-
= 601-301 = 3	Bont Oom

Bu	
$A = \{ n \in [100, 700] \cap N $ (Page No.:	01
$\frac{102}{102}, 105, 108, 101, 114 699 \rightarrow 3 = 102$	
$\partial n = n + (n - 1) \partial - \partial_1 = 3$	-
699 = 102 + 3d - 3	6
M = 600 = 300	-
$\frac{2}{d=12}$	
$100,104,108,112 700 \rightarrow 3 = 100$	9
$a_n = a_{+}(n_{-1})d - d_{z} = 4$	-
700 = 100+420-4	e
$nd = 604 \Rightarrow 151$	5
A Richathakur	6
108,120,132 = - 696	6
696 = 108 + (n-1)12	-6
$m = 600 \Rightarrow 50$	ę
Divisible by 3 & 4 => 800 +151-50 => 801	(
not divisible by 3 f 4 = 600 - 301 +1	ŕ
J _ 300 (c)	
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} A = \{n \in [100, 700] \cap N \\ \hline multiple of 3 : \\ 10 ?, 10 S, 10 8, 10 1 \ 10 1 + 6 3 9 \rightarrow 3 - 10 2 \\ \hline 3 n = \ n + (n - 1) d & \neg d_1 = 3 \\ \hline 6 9 9 = 10 2 + 3 d - 3 \\ \hline m = \ 6 0 0 \ = 7 3 3 0 0 \\ \hline m = \ 6 0 0 \ = 7 3 3 0 0 \\ \hline m = \ 6 0 0 \ = 7 3 3 0 0 \\ \hline m = \ 6 0 d \ = 7 3 d = 100 \\ \hline 3 n = \ a + (n - 1) d & \neg d_1 = 4 \\ \hline 7 0 0 = 100 + 4n - 4 \\ \hline 7 0 0 = 100 + 4n - 4 \\ \hline n d \ = \ 6 0 d \ = 151 \\ \hline d \\ \hline \end{array} $ $ \begin{array}{c} \begin{array}{c} \text{Richathakur} \\ \hline multiple of 1 2 \\ \hline \end{array} \\ \hline \begin{array}{c} \text{Richathakur} \\ \hline 108, 120, 132 \ = \ - \ 696 \\ \hline \end{array} \\ \hline \begin{array}{c} 6 96 \ = \ 108 + (n - 1) 12 \\ \hline n = \ 6 00 \ = 50 \\ \hline \end{array} \\ \hline \begin{array}{c} 12 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{Divisible by } 3 \ \mathcal{A} \ 4 \ = \ 800 + 151 - 50 \ = \ 301 \\ \hline \end{array} \\ \hline \begin{array}{c} \text{not divisible by } 3 \ \mathcal{A} \ 4 \ = \ 600 - 301 + 1 \\ \ \end{array} \\ \hline \end{array} \end{array}$

QUESTION [JEE Mains 2023 (29 Jan)]

KTK 03

Let $\{a_k\}$ and $\{b_k\}, k \in N$, be two G.P.s with common ratios r_1 and r_2 respectively such that $a_1 = b_1 = 4$ and $r_1 < r_2$. Let $c_k = a_k + b_k$, $k \in N$. If $c_2 = 5$ and $c_3 = \frac{13}{4}$ then $\sum_{k=1}^{\infty} c_k - (12a_6 + 8b_4)$ is equal to
KTK-03 (13) GIP, -> a1, a2 --CnP2 -> b1, b2 --br > 2 $a_1 = b_1 = 4$ PIKPL CK= akt bk $C_2 = a_2 + b_2 = 5$ C3 = Cg + b3 = 13/4 479-+472=134 m, +m = 13/16 47,+42=5 -4(10,+13)=5 8,+82= 5/4 アッチ (5/4-ア)= うろし 168/+(5-48,)= 13 160% + 25 - 400, + 160% = 13 3201+12-400,=0 80, -100, +3=0 88,-62,-45,+3=0 (2rg-1) (Arg-3)=0 $r_1 = 1/2$ $r_1 = 3/4$ X r_2 r2=45 r2= 5/4-1/2 = 314

 $b_1 = 4$ a1= 4 m2= 3/4 で1=15 $\sum_{k=1}^{\infty}$ CK-(2a6+864) $= \left(\sum_{k=1}^{\infty} (a_{k}+b_{k}) \right) - (12a_{6}+8b_{4})$ $= \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k - (12a_k + 8b_4)$ $= \frac{a_1}{1-s_1^2} + \frac{b_1}{1-s_2^2} - (12(a_1s_2^5) + 8(b_1s_2^3))$ $= \frac{4}{1-12} + \frac{4}{1-3/4} - (12(4\times(5))) + 8(4\times(3)))$ = $8 + 16 - (12 \times 1/8 + 8 \times \frac{27}{18})$ = 24 - (3/2 + 27/2)= 24 - (3%) = 24-15 = 9 Amb: 9

QUESTION [JEE Mains 2024 (6 April)]

KTK 04

Let α , β be roots of $x^2 + \sqrt{2}x - 8 = 0$. If $U_n = \alpha^n + \beta^n$, then $\frac{U_{10} + \sqrt{2}U_9}{2U_8}$ is equal to

 $Un = x^n + \beta^n$ $\chi^2 + \sqrt{2}\chi - 8 = 0$ KTK-04 $X+B=-\sqrt{2}$ Richathakur $X\beta = -8$ By using N-F : Un+2 + N2Un+1 - 8Un =0 n=8Put U10+ N210g- 840 = D $\sqrt{2}Ug = 8U_8$ V10+ J2 U9 -9 4 208 AG

If mth term of an A.P. is n & nth term is m, then show that its (m + n)th term is zero.

det, fonst term & common difference of Ap TS a & d

$$T_{n} = \alpha + (m-1)d = n$$

$$T_{n} = \alpha + (n-1)d = m$$

$$\Theta$$

$$a = n + m - 1$$

$$(m - 1)d - (m - 1)d = m - m$$

$$(m - 1 - n + 1)d = (m - m)$$

$$- (m - m)d = (m - m)$$

$$d = -1$$

: Tm+n= a+ (m+n-1) d

= a + a(-1)= a - a = 0 (proved)

Solution to Previous Shikaars

QUESTION [JEE Mains 2025 (24 Jan)]

S 01

In an arithmetic progression, if $S_{40} = 1030$ and $S_{12} = 57$, then $S_{30} - S_{10}$ is equal to:

SHJKARR	=) $S_{40} = 1030$ =) $S_{12} = 57$
<u>S-1</u>	S-01 = $2\phi \frac{4\sigma}{2} [2a + 39d] = 103\phi$ = $\int_{x}^{6} \frac{1x}{2} [2a + 11d] = 57$
$S_{40} = 1030$ $S_{12} = 54$	\Rightarrow 4a + 78d = 103 - (1 × 3 =) 12a + 66d = 57 - (2)
40 (2a+ 29d)= 1030 12 (2a+11d)=57	
2	=) 1×a + 234d = 309 - 3
$u_{a+78d=103}$ 120 +660 = 57	-1xa + 66d = 57 - 2
120 + 660 = 5 7	
-120 - 2340 = -309	=) 168d = 252 =) d = 252 = 3. 168 = 2
	=) Put in eq (1) => $4q + 78 \cdot 3 = 103$
d = 252 63 = 9 = 43	2
	$\Rightarrow 4a = 103 - 117 \Rightarrow 4a = -14$
4×9+78×3=103	=) $(a = -7)^{*}$
2	Le la
$4q = 103 - 39x_3$	find: $S - S = 2$
4a = 103 - 47	30 10
$a = \frac{1}{2}$	=> 30 [2a+29d] - 10 [2a+9d]
$S_{30} - S_{10} = 30(2a+29d) - 10(2a+9d)$	15 × 5×
2 2	=) 30a + 435d - 109 - 45d ·
= 15(20 + 29d) - 5(2q + 9d)	=) 200 + 390 d
= 30a + 435d - 10a - 45d	
= 20a + 390d	$\frac{10}{3} - \frac{195}{20(-7)} + \frac{195}{200} (3)$
= 20(-+) + 390(-3)	krish
= -70 + 185×3=515	=> -70 + 585 => (515) dug.

R

$$\frac{S-01}{9} \text{ In an A-P. If Syp=1030 and S_{12}=57 then S_{30}-S_{10}=?}$$

$$=) \frac{40}{9}(2a+39d)=1030 \qquad ; \frac{12}{9}(2a+11d)=57$$

$$=20(2a+39d)=1030 \qquad ; \frac{12}{9}(2a+11d)=57$$

$$=20(2a+39d)=1030 \qquad ; \frac{12a+66d=57}{12a+66d=57}$$

$$=2(2a+39d)=103 \qquad ; 12a=57-33$$

$$=2a+234d=309 \qquad ; 12a=24$$

$$=252$$

$$=\frac{12a+66d=57}{168d=252}$$

<mark>S 02</mark>

The roots of the quadratic equation $3x^2 - px + q = 0$ are 10^{th} and 11^{th} terms of an arithmetic progression with common difference $\frac{3}{2}$. If the sum of the first 11 terms of this arithmetic progression is 88, then q - 2p is equal to

» 20thterm. $d = \frac{3}{2}$ =) $3x^2 - Px + q = 0$ S-02 $a_{10} + a_{11} = P/2$ # 010.011 = 9/3 > => a+9d+a+10d = P/3 \Rightarrow $a + 19 d = \frac{P}{3}$ # S11 = 88 = <u>x1 [za+10d] = 888</u> 2a = P - 57) $\Rightarrow \quad 2a = 2P - 171 \quad - (1)$ =) a + 5d = 8a= 8-15 =) 2P-171 = 2×1 = 2 $a = \frac{1}{2}$ 2P= 177 7 \$X # a10. a11 = 2/3 P = 177=) $\Rightarrow (a+9d) \cdot (a+10d) = \frac{9}{3}$ 2 $\Rightarrow 3 \left(\frac{1}{2} + \frac{27}{2} \right) \left(\frac{1}{2} + \frac{30}{2} \right) = q$ find => 9-2P $\Rightarrow q = 3 \times \frac{28}{2} \times \frac{31}{2}$ krish ⇒ 651 - ₹×177 ₹ $\Rightarrow q = 31 \times 21 = (651)^{*}$ 474 Az: =)

$$So S - 02 \cdot Rock g g q \cdot E 3 n^2 - px + q = 0 \text{ one I form } g \text{ iffm } g A p \text{ with } d = 3/2$$

$$Ig S_{1,1} = 38 \text{ them } q - 2p \text{ is equals } s_0$$

$$\frac{11}{3}(3a + 10d) = 88$$

$$a + 5d = 8$$

$$a + 2d = 2 + 2d = 28 = 10^{4}$$

$$T = a + 10d$$

$$= \frac{1}{2} + 10 \times \frac{3}{2}$$

$$= \frac{1}{4} + 10 \times \frac{3}{2}$$

$$= \frac{1}{2} + 10 \times \frac{1}{2}$$

$$= \frac{1}{2} + 10 \times \frac{1}{2} + 10 \times \frac{1}{2}$$

$$= \frac{1}{2} + 10 \times \frac{1$$

QUESTION [JEE Mains 2025 (22 Jan)]

S 03

Suppose that the number of terms in an A.P. is $2k, k \in N$. If the sum of all odd terms of the A.P. is 40, the sum of all even terms is 55 and the last term of the A.P. exceeds the first term by 27, then k is equal to:

$$S-03 = a_{1} + a_{3} + a_{5} + \dots + a_{2\kappa-1} = 40$$

$$\Rightarrow 40 = \frac{\kappa}{\kappa} [xa + (\kappa-1)xd]$$

$$\Rightarrow 40 = \kappa(a + (\kappa-1)d)$$

$$= 40 = \kappa(a + (\kappa-1)d)$$

$$= 40 = \kappa(a + (\kappa-1)xd)$$

$$\Rightarrow 55 = \kappa [a + d + \kappa d - d]$$

$$\Rightarrow 55 = \kappa (a + \kappa d)$$

$$\Rightarrow 40 = \kappa(a + \kappa d)$$

$$\Rightarrow 40 = \kappa(a + \kappa d) - \kappa d$$

$$\Rightarrow 40 = 55 - \kappa d$$

$$\Rightarrow 40 = -27$$

$$\Rightarrow 2\kappa d - d = 27$$

$$\Rightarrow 30 - d = 27 \Rightarrow (d = 3)^{*}$$

$$= 4\kappa = 15 \Rightarrow 5 = 44$$

QUESTION [JEE Mains 2025 (23 Jan)]

S 04

If the first term of an A.P. is 3 and the sum of its first four terms is equal to one-fifth of the sum of the next four terms, then the sum of the first 20 terms is equal to

$$\Rightarrow \boxed{a:3}$$
S-04 & a_1 + a_2 + a_3 + a_4 = \frac{1}{5} (a_5 + a_6 + a_1 + a_8)
$$\Rightarrow a_1 + a_1 + a_2 + a_3 + a_4 = \frac{1}{5} (a_1 + a_2 + a_1 + a_1 + a_1 + a_2 + a_1 + a_2 + a_1 + a_2 + a_1 +$$

Rw

QUESTION [JEE Mains 2024 (30 Jan)]

<mark>S 05</mark>

Let S_n denote the sum of first n terms of an arithmetic progression. If $S_{20} = 790$ and $S_{10} = 145$, then $S_{15} - S_5$ is:

S-05

520=790 =) S10=145 29 => =) 10 20 [2a + 19d] = 790 1 = ³ 10 [2a + 9d] = 14/5 2/a+19d=79 - () :=> 2/a+9d = 29 - (2) => -(2) => 10d=50 =) d=5) 1 \Rightarrow put in Eq (2) => 2a = -16 => [a = -8]# find: S15-S5=? =) 15 [za+ 14d] - 5 [za+Ad] 15a + 105 d - 5a - 10d =) 10a + 95 d => krish -80+475. =) 395 =)

