

Topics to be covered

- A Quadratic Equation & Its Solution
- **B** Nature of Roots
- C Sum of Roots & Product of Roots

Homework Discussion

QUESTION [JEE Mains 2019 (10 April)]

The number of real roots of the equation $5 + |2^x - 1| = 2^x(2^x - 2)$ is

(A) 2

- Case (1)
- Case (1) If $2^{x}-170 = 12^{x} > 1 = 2^{0} = 1 \times 70$; case (1) If $2^{x}-1<0 = 12^{x}<1=2^{0} = 1 \times 10$

5+2x-1= 22x 2.2x

4++=+2-2+

4

X=2

$$6-2^{\times} = 2^{2^{\times}} \cdot 2 \cdot 2^{\times}$$
 $t^{2} - t - 6 = 0$
 $(t-3)(t+2) = 0$
 $2^{\times} = 3 \cdot 2$
 $x = 4$

rejected

 $x = 4$

5-2×+1= 22× 2.2×

QUESTION

- 9. The equation $4^{\left(\frac{1}{x}-2\right)} = \frac{1}{2} \ln \sqrt{e}$ has the solution-
 - (A) -1

(B) 1

(C) 2

(D) None [Ans. B]

- 10. Solution of the equation $2^{x+2} \cdot 27 = 9$ are given by-

- (A) $\log_2(2/3)$, 1 (B) 2, 1 $\log_2 3$ (C) –2, 1 $\log_2 3$ (D) None of these

[Ans. C]

- 11. If $x^{[\log_3 x^2 + (\log_3 x)^2 10]} = \frac{1}{x^2}$ then x is equal to

 - (A) 9, 1/9 (B) 9, 1/81 (C) 1, 1/9

- (D) 2, 2/9[Ans. B]
- 12. Complete set of values of x satisfying the inequality $x 3 < \sqrt{x^2 + 4x 5}$ is:

(A)
$$(-\infty, 5] \cup [1, \infty)$$
 (B) $(-5, 3]$ (C) $[3, 5)$

Aao Machaay Dhamaal Deh Swaal pe Deh Swaal

Polynomial in One Variable

An algebraic expression of the form

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^1 + a_0 x^0$$
, where

- (i) $a_n \neq 0$
- (ii) Power of x is whole number, is called a polynomial in one variable.

Hence, $a_n, a_{n-1}, a_{n-2}, \ldots$ are coefficients of x^n , x^{n-1} , x^0 respectively and $a_n x^n, a_{n-1} x^{n-1}, a_{n-2} x^{n-2} \ldots$ are term of the polynomial. the term $a_n x^n$ is called is Leading term and its coefficient a_n , the leading coefficient.

NOTE:

If leading coefficient is 'I' then the polynomial is called as monic polynomial.

Degree	Name	General Form	Example
(undefined)	Zero polynomial	0	0
0	(Non – zero) constant polynomial	a; (a ≠ 0)	1
1	Linear polynomial	$ax + b$; $(a \neq 0)$	x + 1
2	Quadratic polynomial	$ax^2 + bx + c; (a \neq 0)$	$x^{2} + 1$
3	Cubic polynomial	$ax^3 + bx^2 + cx + d$; $(a \neq 0)$	$x^3 + 1$

Quadratic Equation and Its solution

P(x) = ax2+bx+c, a = 0 18 a quadratic polynomial

a x²+bx+c=0 (Quadratic Eqn)

Funda mental Theorem of Algebra

Every polynomial Eqn of clergree n about have

exactly n roots (realer imaginary) counted with multiplicity.

Ex: (x-1)²(x-2)=0

abic Eqn.

Colutions = no: of clistinct roots

X=1,1,2-1 roots.

solutions x=1,2

 $(x-2)^2 (x-1)^3 = 0 \longrightarrow 5 \text{ degree Eqn}$ $(x-1)^1 |_{x=1}^{1/2} > 0 \longrightarrow 5 \text{ degree Eqn}$

$$a\chi^{2} + bx + C = 0 , \alpha \neq 0$$

$$\chi^{2} + \frac{b}{\alpha}x + \frac{C}{\alpha} = 0$$

$$\chi^{2} + \frac{b}{\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} - \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$

$$\chi^{2} + \frac{b}{\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} - \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$

$$\chi^{2} + \frac{b}{\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} - \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$

$$\chi^{2} + \frac{b}{\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} - \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$

$$\chi^{2} + \frac{b}{\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} - \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$

$$\chi^{2} + \frac{b}{\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} - \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$

$$\chi^{2} + \frac{b}{\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} - \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$

$$\chi^{2} + \frac{b}{\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} - \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$

$$\chi^{2} + \frac{b}{\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} - \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$

$$\chi^{2} + \frac{b}{\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} - \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$

$$\chi^{2} + \frac{b}{\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} - \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$

$$\chi^{2} + \frac{b}{2\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} - \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$

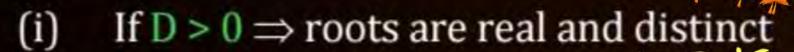
$$\chi^{2} + \frac{b}{2\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} - \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$

$$\chi^{2} + \frac{b}{2\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} - \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$

$$\chi^{2} + \frac{b}{2\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} - \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$

$$\chi^{2} + \frac{b}{2\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} - \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$

$$\chi^{2} + \frac{b}{2\alpha}x + \left(\frac{b}{2\alpha}\right)^{2} + \frac{C}{\alpha} = 0$$


$$\chi^{2} + \frac{b}{2\alpha}x + \frac{D}{2\alpha}x +$$

square completion 0x2+6x+C $= a(x^2 + \frac{b}{a}x) + c$ Add & Sub (coeffor) $= \alpha(x + \frac{b}{a}x + (\frac{b}{2a})^{2} + (\frac{b}{2a})^{2} + c$ = a(x+ b) = b2 +c.

Nature of Roots

(D = Discriminant = 62-4ac for ax2+ bx+c=0

$$2,\beta = -\frac{b \pm JD}{2a}$$
a,b,ceR.

(ii) If
$$D = 0 \Rightarrow$$
 roots are real and equal

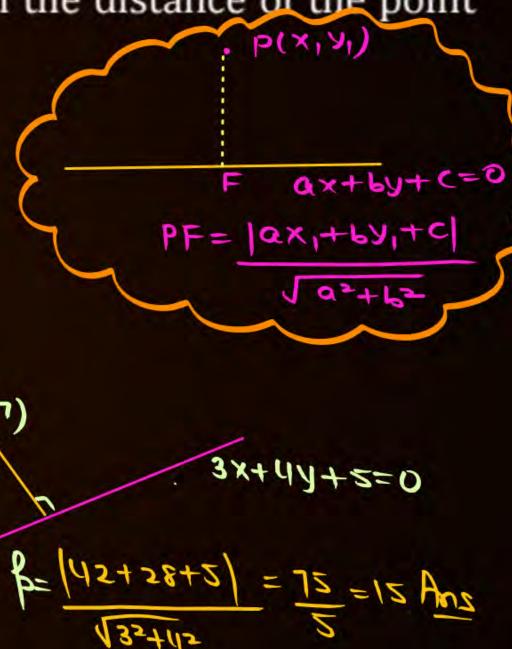
$$D=-3$$

$$T = -$$

For real roots
$$D \ge 0$$
.

equal mahi hongi

QUESTION [JEE Mains 2025 (3 April)]


Let the equation x(x + 2)(12 - k) = 2 have equal roots. Then the distance of the point

$$\left(k, \frac{k}{2}\right)$$
 from the line $3x + 4y + 5 = 0$ is

- $5\sqrt{3}$
- $15\sqrt{5}$

$$\chi^{2}+2\chi = \frac{2}{12-K}$$
 $\chi^{2}+2\chi - \frac{2}{12-K} = 0$
 $\chi^{2}+2\chi - \frac{2}{12$

QUESTION [JEE Mains 2025 (29 Jan)]

If the set of all $a \in \mathbf{R}$, for which the equation $2x^2 + (a - 5)x + 15 = 3a$ has no real root, is the interval (α, β) , and $X = |x \in Z; \alpha < x < \beta|$, then $\sum_{x \in X} x^2$ is equal to:

2139

- B 2119
- **C** 2109
- D 2129

$$\alpha \in (-1d^{2})$$

$$\alpha \in (-1d^{2})$$

$$\alpha \in (-1d^{2})$$

$$\alpha = (-1d^{2}$$

$$\begin{array}{c} \times & 1 + 2 + 3 + - - + m = \frac{m(m+1)}{2} \\ \times & 1^{2} + 2^{2} + - - - + m^{2} = \frac{m(m+1)(2m+1)}{6} \\ \times & 1^{3} + 2^{3} + - - + m^{3} = \left(\frac{m(m+1)}{2}\right)^{2} \end{array}$$

QUESTION [JEE Mains 2020]

The least positive value of 'a' for which the question, $2x^2 + (a - 10)x + \frac{33}{2} = 2a$ has real roots is

Let a, b, $c \in \mathbb{R}_0$ and 1 be a root of $ax^2 + bx + c = 0$ then comment on nature of roots of

$$4ax^2 + 3bx + 2c = 0$$
.

$$M()$$
 $ax^2+bx+c=0$
 $b=-(a+c)$
 $a+b+c=0$
 $b=-(a+c)$
 $a+b+c=0$

$$| (a \times_3 + 3b \times + 2c = 0)$$

$$= 2b^2 - 4 \cdot 4a \cdot 3c = 2b^2 - 32ac = 2b^2$$

Let a, b, $c \in \mathbb{R}'_0$ and 1 be a root of $ax^2 + bx + c = 0$ then comment on nature of roots of $4ax^2 + 3bx + 2c = 0$.

MQ

$$ax^2+bx+c=0$$
 $x=\beta \in R$ clearly
$$D=b^2-4ac > 0$$

$$D_{2} = 9b^{2} - 4.40.2c = 9b^{2} - 32ac$$

$$D_{2} = b^{2} + 8b^{2} - 32ac$$

$$D_{3} = b^{2} + 8(b^{2} - 4ac)$$

$$D_{4} = b^{2} + 8(b^{2} - 4ac)$$

$$D_{5} = b^{2} + 8(b^{2} - 4ac)$$

$$D_{6} = b^{2} + 8(b^{2} - 4ac)$$

$$D_{7} = b^{2} + 8(b^{2} - 4ac)$$

$$D_{8} = b^{2} + 8(b^{2$$

Relation between Roots & Coefficients

(1) Sum of Roots

$$So R = -\frac{b}{a} = \alpha + \beta$$

$$ax^{2}+bx+c=0$$

$$A = -\frac{b+\sqrt{D}}{2a}$$

$$B = -\frac{b-\sqrt{D}}{2a}$$

$$\alpha \beta = \frac{-2b}{2a} = \frac{-b}{a}$$

$$\alpha \beta = \frac{(-b)^2 - (\sqrt{5})^2}{4a^2} = \frac{b^2 - (b^2 - 4ac)}{4a^2} = \frac{c}{a}$$

(2) Product of Roots

If
$$D<0$$
 =) roots are imaginary
$$ax^2 + bx + c = 0$$

Hence

 $\alpha + \beta$ and $\alpha\beta$.

Symmetric Function of Roots

If $f(\alpha, \beta) = f(\beta, \alpha)$ then $f(\alpha, \beta)$ is said to be a symmetric function of roots.

e.g.
$$f(\alpha, \beta) = \alpha^2 + \beta^2$$
, $\alpha^2\beta + \beta^2\alpha + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$

$$f(\beta, \alpha) = \beta^2 + \alpha^2, \beta^2\alpha + \alpha^2\beta + \frac{\beta}{\alpha} + \frac{\alpha}{\beta}$$

$$f(\beta, \alpha) = \beta^2 + \alpha^2, \beta^2\alpha + \alpha^2\beta + \frac{\beta}{\alpha} + \frac{\alpha}{\beta}$$

$$f(\beta, \alpha) = \beta^2 + \alpha^2, \beta^2\alpha + \alpha^2\beta + \frac{\beta}{\alpha} + \frac{\alpha}{\beta}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\beta}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\beta}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\beta}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\beta}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\beta}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\beta}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\beta}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\beta}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\beta}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\beta}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\beta}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\beta}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\beta}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\beta}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \alpha^2, \beta^2\alpha + \frac{\beta}{\beta} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \frac{\beta}{\alpha} + \frac{\beta}{\alpha} + \frac{\beta}{\alpha} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \frac{\beta}{\alpha} + \frac{\beta}{\alpha} + \frac{\beta}{\alpha} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \frac{\beta}{\alpha} + \frac{\beta}{\alpha} + \frac{\beta}{\alpha} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \frac{\beta}{\alpha} + \frac{\beta}{\alpha} + \frac{\beta}{\alpha} + \frac{\beta}{\alpha} + \frac{\beta}{\alpha}$$

$$f(\alpha, \beta) = \beta^2 + \frac{\beta}{\alpha} + \frac{\beta}{\alpha}$$

QUESTION

If α , β are the roots of quadratic equation $ax^2 + bx + c = 0$, then which of the following expressions in α , β will denote the symmetric functions of roots. Given proper reason.

$$f(\alpha, \beta) = \alpha^2 - \beta \qquad f(\alpha, \beta) = \alpha^2 \beta \qquad f(\alpha, \beta) = \beta^2 \alpha$$

$$f(\beta, \alpha) = \beta^2 \alpha$$

$$f(\alpha,\beta) = \alpha^2\beta + \alpha\beta^2 - f(\beta,\alpha) = \beta^2\alpha + \alpha^2\beta = f(\alpha,\beta)$$

$$f(\alpha,\beta) = \ln \frac{\alpha}{\beta} - f(\beta,\alpha) = 2n(\frac{\beta}{\alpha}) = 2n(\frac{\alpha}{\beta})^{\frac{1}{2}} - 2n(\frac{\alpha}{\beta}) + f(\alpha,\beta)$$

$$f(\alpha,\beta) = \cos(\alpha-\beta) \cap f(\beta,\alpha) = \cos(\beta-\alpha) = \cos(-(\alpha-\beta))$$

$$= \cos(\alpha-\beta) = f(\alpha,\beta)$$

* *
$$(\alpha + \beta)^2 = (\alpha + \beta)^2 = 2\alpha\beta$$
.

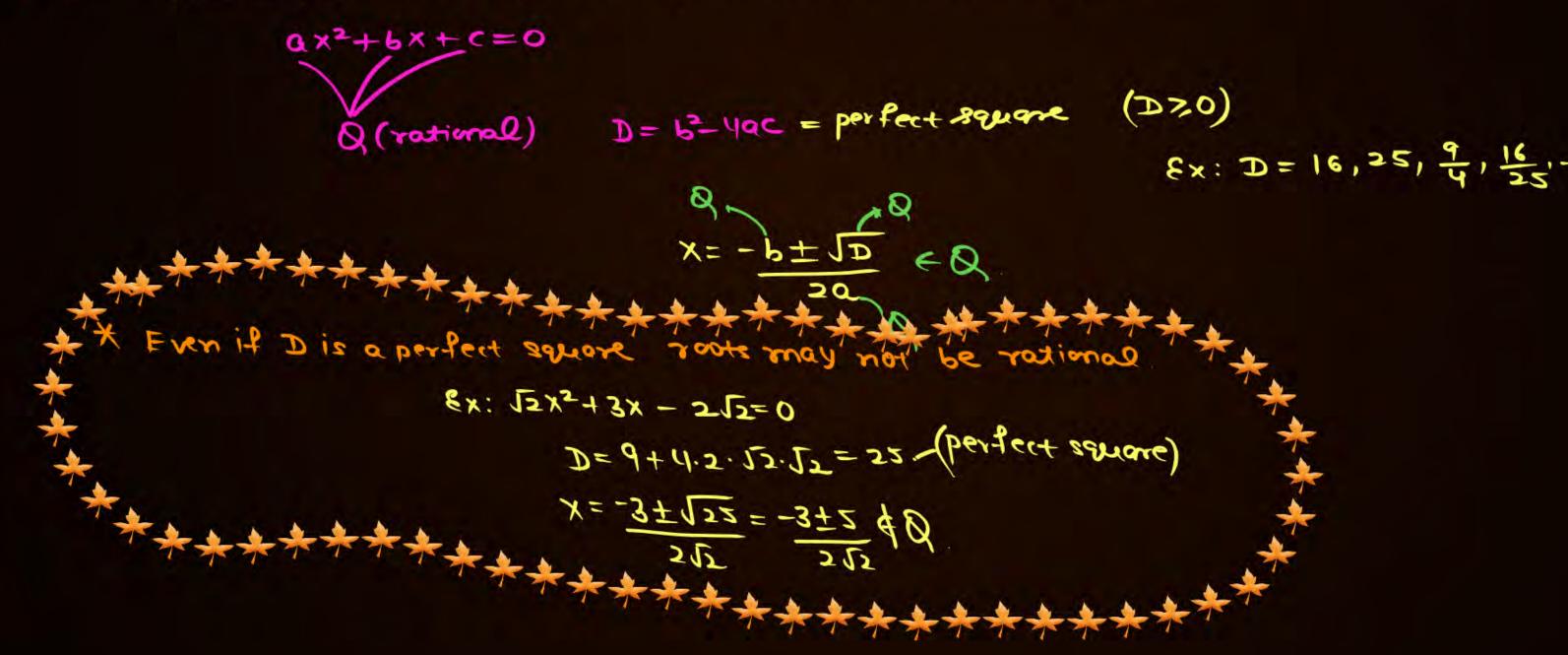
* $(\alpha - \beta)^2 = (\alpha + \beta)^2 = (\alpha$

*
$$\chi^3 + \beta^3 = (\alpha + \beta)(\chi^2 + \beta^2 - \alpha \beta) = (\alpha + \beta)((\alpha + \beta)^2 - 3\alpha \beta)$$

If $\alpha \& \beta$ are roots of equation $x^2 - 4x - 8 = 0$ then find value of following:

(iii)
$$E = \frac{1}{(\alpha - 4)^2} + \frac{1}{(\beta - 4)^2}$$
 $(\alpha - 4) = 8$ (iii) $(\alpha^2 + \beta^2)^{1/3} + (\alpha^2 + \beta^2)^{1/3}$

$$E = \frac{eh}{\alpha_5 + k_5} = \frac{eh}{35} = 115$$



Some Important Points

P(1): If a, b, $c \in Q$ and D is perfect square then roots are rational.

(ODD) = ODD

V(Even) = even.

P(2): If a = 1, b, $c \in I$ and D is square of an integer then roots are integers.

$$\chi^2 + b \times + c = 0$$
 $D = b^2 - y_c$. = square of an integer.
 $\chi = -b \pm JD$ $\Delta = -b \pm$

Ex:
$$x^2-5x+6=0$$
 $Q=1, b=-5, c=6\in \mathbb{I}$
 $D=25-24=1=1^2$
 $Toots=+5\pm IT=3, 2\in \mathbb{I}$

$$X = 0 + 105 = 2'-2'$$

$$D = 0_{5} - 1/(-52) = 100 = 10_{5}$$

$$D = -100 + (10468)$$

$$EX: X_{5} - 52 = 0$$

$$EX: X_{5} + 52 = 0$$

$$EX: X_{5} + 52 = 0$$

a+75

P(3): If a, b, $c \in Q$ and D is not square but D > 0 then roots are irrational and occurs in

conjugate pair of surds i.e.

Roots are of form $p + \sqrt{q} & P - \sqrt{q}$.

Ex:
$$\chi^2 - 3x - 6 = 0$$

 $\alpha = 1, L = -3, c = -6 \in \mathbb{Q}$
 $D = 9 + 24 = 33$

$$X = \frac{3 + \sqrt{33}}{2}, \frac{3 - \sqrt{33}}{2}$$
 $X = \frac{3 + \sqrt{33}}{2}, \frac{3 - \sqrt{33}}{2}$

NOTE:

If a, b, $c \in Q$ and if one root of quadratic is $3 + \sqrt{7}$ then other root is $3 - \sqrt{7}$.

Ex: If a,b,core rational & one root of quadis 15+2
find the other root

Gadho Gadhiyoo ka Ans: VI-2.

Phadre waslay: 2-15.

Ex: If a, b, c ∈ Q in a quad then its roots can be = 3 \$ 8+15

$$X = -1/3$$
 $X = -1/3$
 $X = -1/3$

If a,b,c are not
all rational & D

all rational & D

Is not a perfect square

then root may or may

not occur in conjugate

Took of surds.

Q, b, CEQ D is perfect square rational

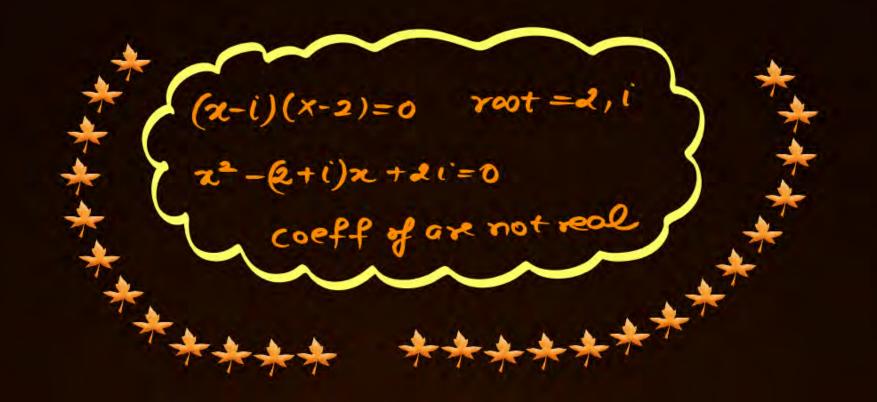
a,b,cfQ D is not a perfect roots occur
square & D>0

In conjugate
pair of Sunds.

(1)

P(4): If a, b, $c \in R$ and D < 0 then roots are imaginary and occur in conjugate pair i.e. if one roots is p + iq then other root is p - iq.

NOTE:


If a, b, $c \in R$ and one root of quad is p + iq then other root is p - iq.

Ex: If one root of a quadrostic is 1+i find other root

Gadho Gadhiyoo ka answer: 1-i

Phadnewaalay: Can not say

NOTE:

Every odd degree polynomial equation with real coefficient must have at least one real root. Because imaginary roots occur in conjugate pair.

Sabhi Class Illustrations Retry Karnay hai...

No Selection TRISHUL Selection with Good Rank Apnao IIT Jao

The sum of all the solutions of the equation $(8)^{2x} - 16 \cdot (8)^x + 48 = 0$ is:

- **B** $1 + \log_6(8)$
- \bigcirc $\log_8(6)$
- $\log_8(4)$

QUESTION [JEE Mains 2023 (24 Jan)]

(KTK 2)

The number of real solutions of the equation $3\left(x^2 + \frac{1}{x^2}\right) - 2\left(x + \frac{1}{x}\right) + 5 = 0$, is

- (A) 3
- **B** 4
- **(c)** 0
- **D** 2

The complete solution set of the inequality $\frac{3^{x}(2x-5)(x^{2}+x+2)}{(\cos x-2)(x^{2}+x)} \leq 0$ is

- $(-\infty, -1)$
- $\left(\frac{5}{2},\infty\right)$

(KTK 4)

If S is the set of all real 'x' such that $\frac{x^2(5-x)(1-2x)}{(5x+1)(x+2)}$ is negative and $\frac{3x+1}{6x^3+x^2-x}$ is positive, then S contains

- (1,4)
- **B** (5, 11)
- (-10, -4)

(KTK 5)

Let a, b, c be three real numbers such that a + 2b + 4c = 0. Then the equation $ax^2 + bx + c = 0$

- (A) has both the roots complex
- (B) has its roots lying within -1 < x < 0
- has one of the roots equal to $\frac{1}{2}$
- has its roots lying within 2 < x < 6

QUESTION [JEE Mains 2025 (24 Jan)]

(KTK 6)

The product of all the rational roots of the equation $(x^2 - 9x + 11)^2 - (x - 4)(x - 5) = 3$, is equal to

- (A)
- B) 21
- **C** 28
- **D** 14

If $\sin \theta$ and $\cos \theta$ are the roots of equation $ax^2 - bx + c = 0$, then a, b and c satisfy the relation

- (A) $a^2 + b^2 + 2ac = 0$
- (B) $a^2 b^2 + 2ac = 0$
- (c) $a^2 + c^2 + 2ab = 0$
- $\mathbf{D} \quad \mathbf{a}^2 \mathbf{b}^2 2\mathbf{a}\mathbf{c} = 0$

The roots of the quadratic equation $x^2 - 2\sqrt{3}x - 22 = 0$ are

- (A) imaginary
- B real, rational and equal
- c real, irrational and unequal
- real, rational and unequal

Homework From Module

Prarambh (Topicwise) : Q1 to Q25

Prabal (JEE Main Level) : Q1 to Q33

Solution to Previous TAH

QUESTION

Find the number of integral values of x satisfying the inequality

$$\left(\frac{3}{4}\right)^{6x+10-x^2} < \frac{27}{64}$$

O Find the no of integral values of
$$x$$

$$\left(\frac{3}{4}\right)^{6x+10-x^2}$$

$$\left(\frac{27}{64}\right)^{6x}$$

$$\left(\frac{3}{4}\right)^{6x+10-x^2} < \left(\frac{3}{4}\right)^3$$

Rajkanya From Bihar

$$6x+10-x^{2}>3$$

$$-x^{2}+6x+7>0$$

$$x^{2}-6x-7<0$$

$$(x-7)(x+1)<0$$

$$\frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) \right]$$

393	Date -
	Page
	(3)
	10th May 2025 Lecture (F)
	as a satisfying
0150	Tan-60 values or
	toth May 2025 Lecture Tan-10 Tan-10 Tind the number of mtegral values of a safisfying the inequality.
	the inequality. (3) $8x+10-x^2$ (27) D= 36+28=64
William .	1318x+10-x2 27
	$(4) \frac{64}{6110-4^2} \frac{64}{(3)^3} \frac{6+164-6+8}{6+164-6+8}$
	$\frac{(3)^{6x+10-x^2}}{(4)^4} \times \frac{(3)^3}{(4)^3} \times \frac{6+164-6+8}{2} \times \frac{6-8}{2}$
	67110-12 (3
	$\frac{34710-4}{x^2-6x-770} \times (-60,-1) \cup (7,0)$
-	A6.2-T/U
	50, no. of integral values = (0,1,2,3,4,5,6) = 7 Ans

QUESTION [JEE Mains 2020 (8 Jan)]

Let S be the set of all real roots of the equation,

$$3^{x}(3^{x}-1)+2=|3^{x}-1|+|3^{x}-2|$$
. Then S:

contains exactly two elements.

is an empty set.

(ase(1)) if
$$+35$$

then 3. (set of all real roots) . 3x(3x-1)+2= |3x-1|+ |3x-2| Rut 3 = t t-t+2=|t-11+|t-2| Rajkanya From Bihar case (ii) is t < 1 coseO is t >2 t2-t+2=1-t+2-t t2-t+2= t-1+t-2 t+t-1=0 t-3++=0 $t = -\frac{1}{2} + \sqrt{5} = -\frac{1}{2} - \frac{1}{2} + \sqrt{5}$ no real roots. 3 = -1-55 -1+55 cose if 1<t <2 t-++2= t-1-++2 2 log3 = log3 (-1+V5) t- ++1 = 0 × = 109, (-1+55) UN DCO no real roots. S = { log, (-1+55)} (c) is a singleton.

	Tan-62) (Mains 2020)				
	let s be the set of all real roots of the ean.				
	$3^{\alpha}(3^{\alpha}-1)+2= 3^{\alpha}-1 + 3^{\alpha}-2 $. Then S:-				
	10+ 37=+·				
	+(+-1)+2= +-1 + +-2 T + +				
	+2-++2= +-1 +1+-2 T2 - 1 - 1 +				
	LST, LST2				
	Case D X < 1	(asc @) 1 (x (2.	Case (3) x 2 2		
	+2-1+2= -++1-++2	+2-++2= X-1-X+2	+2-++2= +-1++-2		
1	12++-1=0	+3-++1=0	x2-++2= 23-3		
1	#= -1+ 15 ,-1-5	D=1-4<0,070	12-31 +5= 0		
	2 2	almays Positive	D= 9-20<0		
1	ned almays to				
	XEQ.				
	1 = -1+15 1-15				
	37 = -1+ = - = - 1 angening				
	3 = -1+15 a -1-15 -> bcz (Positive) = almays				
	-				
	5 is a singleton set.				
1					

-

QUESTION [JEE Mains 2019 (10 April)]

The number of real roots of the equation $5 + |2^x - 1| = 2^x(2^x - 2)$ is

- (A) 2
- **B** 1
- **(c)** 3
- **D** 4

Q. The no. of real roots of the equation 5+12-11=22(22-2) 2-120 Cose 1 2 -1 >0 Los(1) oc < 1 2 7 1 = 2" 5+1-2 = (2) -2.2 $x \gg 0$ Put 2 = t 5+22-1=(22)-2.22 $6-t=t^2-2t$ Put 2 = t t- t-6 =0 $5 + t - 1 = t^2 - 2t$ (t-3)(t+2) = 0 t2-3t-4=0 t = 3, -2(t-4) (t+1)=0 t = 4, -1 $2^2 = 2^2, -1$ (rejected) $2^{2} = -2$, $2^{\times} = 3 \times$, ax 41 xep x = 2. Rajkanya From Bihar 1 real solo - only

$$2^{\times} = t$$
 $5 + 1t - 11 = t(t - 2)$

Case 01

$$t-1 \ge 0$$

 $t \ge 1$
 $5+t-1=t^2-2t$
 $t^2-3t-4=0$
 $t^2-4t+t-4=0$

$$t(t-4)+1(t-4)=0$$

 $(t+1)(t-4)=0$

t - 1 < 0 t < 1 $5 - t + 1 = t^{2} - 2t$ $t^{2} - t - 6 = 0$ $t^{2} - 3t + 2t - 6 = 0$ t(t - 3) + 2(t - 3) = 0 t = 3, t = -2

case 02

$$2^{\times} = 4$$

$$2^{\times} = 2^{2}$$

$$(X = 2)$$

QUESTION [JEE Mains 2016]

If x is a solution of the equation, $\sqrt{2x+1} - \sqrt{2x-1} = 1$, $\left(x \ge \frac{1}{2}\right)$, then $\sqrt{4x^2-1}$ is equal to:

- $\bigcirc A \qquad \frac{3}{4}$
- \bigcirc $\frac{1}{2}$
- (c) 2
- \bigcirc $2\sqrt{2}$

```
1AH-04
Q. It so is a soin of . Jon +1-Jox -1 = 1, (x>1) then
        ~ 422-1: is.
                               Rajkanya
                               From Bihar
    V2x+1-J2x-1=1
       S. B.S.
   2x+1+2x-1-22(2x+1)(2x-1)= 1
           4x - 2 - (2x+1) (2x-1) = 1
           4x - 2\sqrt{4x^2-1} = 1
             2 J 4 x 2-1 = 4 x -1
               \sqrt{4\times^2-1} = \frac{4\times-1}{2}
     S. B. S.
                                   & 4x2-1>0
(2x-1)(2x+1)>0
       4 2 2 1 = (4 2 1).2
           4(4 >i-1)=(4 × -1)2
                                       -1
           16x2-4=16x2+1-8x
                                        そ(-00,-1)い(2,00)
         \sqrt{4\times^2-1} = \sqrt{4\times^2\frac{5}{64}} - 1 = \sqrt{\frac{25}{16}} - 1
```

= 1 = 3

®

QUESTION [JEE Mains 2022 (30 June)]

Let
$$S_1 = \left\{ x \in R - \{1,2\} : \frac{(x+2)(x^2+3x+5)}{-2+3x-x^2} \ge 0 \right\}$$
 and $S_2 = \{ x \in R : 3^{2x} - 3^{x+1} - 3^{x+2} + 27 \le 0 \}$.
Then, $S_1 \cup S_2$ is equal to :

- $(-\infty, -2] \cup (1, 2)$
- B) $(-\infty, -2] \cup [1, 2]$
- (C) (-2,1] ∪ [2,∞)
- (D) (-∞, 2]

```
Q. S. = \{x \in R - \{1,23: \frac{(x+2)(x^2+3x+5)}{-2+3x-x^2} > 0\}
   S2 = {xeR: 32 - 3x+1 - 3x+2 27 < 03.
    then, S.US2 = ?
 for S .:-
   \frac{(3(+2)(3^2+3)(+5)}{-2+33(-3)^2} \ge 0
   (x+2) (x2+32+5) always +ve
     22-3242
   (>1-1)(>1-2) < 0
   x∈(-∞,-2] v(1,2).
 & xe R- 81,23
 So, oce (-00,-2]v(1,2)
      Mow, Siusz
        x e (-00,-2] v [1,2]
```

$$3^{x+2} + 27 \le 0$$

$$3^{x+2} + 27 \le 0$$

$$3^{x+2} + 27 \le 0$$

$$3^{2x} - 3^{x+1} - 3^{x+2} + 27 \le 0$$

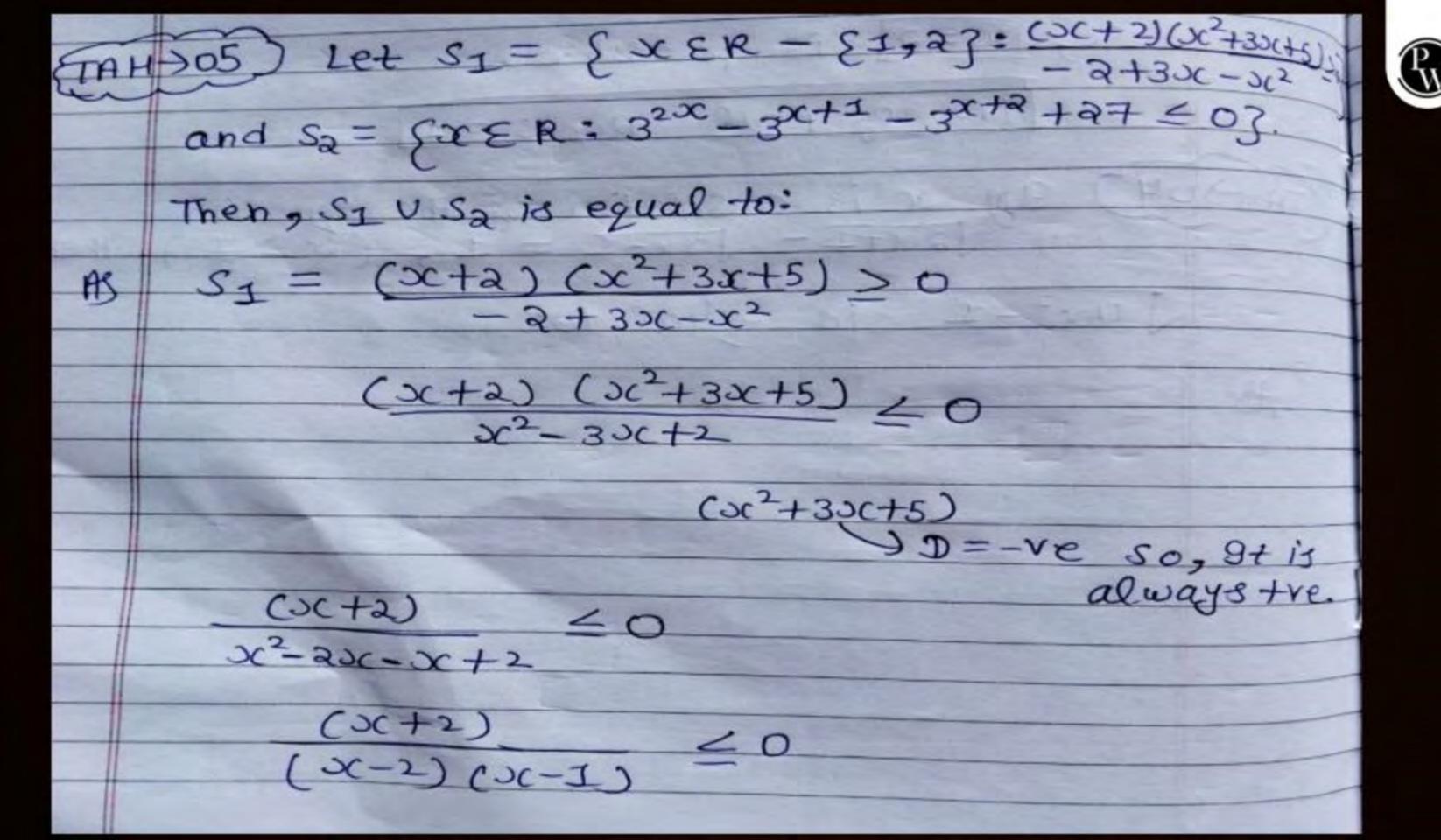
$$3^{2x} - 3 \cdot 3^{x} - 9 \cdot 3^{x} + 27 \le 0$$

$$3^{2x} - 12 \cdot 3^{x} + 27 \le 0$$

$$7ut - 3^{x} = t$$

$$t^{2} - 12t + 27 \le 0$$

$$(t-9)(t-3) \le 0$$


$$t \in [3,9]$$

$$3^{x} \in [3,8^{2}]$$

$$x \in [1,2]$$

Rajkanya

Rajkanya From Bihar

$$S_{1} = x \in (-\infty, -2] \cup (1, 2)$$

$$S_{2} = 3^{2x} - 3^{x+1} - 3^{x+2} + 27 \le 0$$

$$S_{3} = 3^{3x} - 3^{3} - 3^{3} - 3^{3} - 3^{3} - 2^{x} + 27 \le 0$$

$$Fut 3^{x} = t$$

$$t = 3^{x} - 9t + 27 \le 0$$

$$t = (t - 3) - 9(t - 3) \le 0$$

$$(t - 9)(t - 3) \le 0$$

$$t = 3^{x} = t$$

$$S_{2} = t \in [3, 9]$$

$$S_{3} = t \in [3, 9]$$

$$S_{3} = t \in [3, 9]$$

$$S_{3} = t \in [3, 9]$$

$$S_{4} = t \in [3, 9]$$

$$S_{5} = t \in [3, 9]$$

Tah - 05 Q1. -> (x+2) (x2+3x+5) >0 > DLO , aso was are (242) (2243x45) 2-3242 (n-2) (n-1) ----x G (-00, -2] U (1,2) But for si: xCR-{1,2} -2 1 2 :. xc(-00,-2]v(1,2).

32x - 3x41 - 3x42 + 27 60 32x - 3.3x - 9.3x +27 40 let 3x= ± 1 -34 -94 427 4D 12-124 +27 60 (A-9) (A-3) 60 10[3,9] 3x C [3,9] x @ [1,2] for Sz: XER : x @ [1.2]

2 C(-00,-2] U[1,2]

Pw

QUESTION [JEE Mains 2022 (25 June)]

Let $A = \{x \in R: |x + 1| < 2\}$ and $B = \{x \in R: |x - 1| \ge 2\}$. Then which one of the following statements is NOT true?

- (A) A B = (-1, 1)
- **B** B A = R (-3, 1)
- (c) $A \cap B = (-3, -1]$
- $A \cup B = R [1, 3)$

$$A = 1 \times +11 < 2$$
 $-2 < x +1 < 2$
 $8 =$

(P) 13-A =
$$\frac{1}{3}$$
 = $(-\infty, -3] \cup [3, \infty)$

Rajkanya From Bihar

x-172 & x-15-2

x7,3 x <-1

>c ∈ (-∞,-1] ∪ [3,∞)

x e R n x (-00,-1] u [3,0)

120-117 2

QUESTION [JEE Mains 2021 (17 March)]

The value of 4 +
$$\frac{1}{5 + \frac{1}{4 + \frac{1}{5 + \frac{1}{4 + \cdots \infty}}}}$$
 is:

A
$$2 + \frac{2}{5}\sqrt{30}$$

$$\mathbf{B} \quad 2 + \frac{4}{\sqrt{5}}\sqrt{30}$$

$$5 + \frac{2}{5}\sqrt{30}$$

$$y = 4 + \frac{1}{5 + 4}$$
 $y = 4 + \frac{1}{5y + 1}$
 $y = 4 + \frac{1}{5y + 1}$

5y2+y = 20y+4+y

$$5y^{2}-20y-4=0$$

$$y^{2}=\frac{20\pm 4\sqrt{30}}{10}$$

$$y=2\pm 0.4\sqrt{30}, 2-0.4\sqrt{30}$$

$$y=2+\frac{2}{5}\sqrt{30}$$

Rajkanya From Bihar TAH DOT The value of 4+ 5+1 5+1 4+1 Put AS 5+1 4+ ----00 => 4 + x = 20x+4+x 5x+1 $5x^2 + x = 210c + 4$ 5x2-20x-4=0 x D = 400 + 4(20) = 480 DC = 20 + JUBO = 20+ 4730 0 + 2 130

QUESTION [JEE Mains 2020 (5 Sept)]

The product of the roots of the equation $9x^2 - 18|x| + 5 = 0$ is:

- $\bigcirc A \qquad \frac{5}{9}$
- $\frac{25}{81}$

Pw

TAH-8
9. Product of the roots
$$9x^{2}-18|x|+5=0$$

$$9|x|^{2}-18|x|+5=0$$

$$9|x|^{2}-18|x|+5=0$$

$$9|x|^{2}-18|x|+5=0$$

$$9|x|^{2}-18|x|+5=0$$

$$9|x|^{2}-18|x|+5=0$$

$$9|x|^{2}-18|x|+5=0$$

$$1|x|=t$$

$$9|x|^{2}-18|x|+5=0$$

$$1|x|=t$$

$$1|x|=t$$

$$1|x|=t$$

$$1|x|=t$$

$$3|x|=t$$

$$4|x|=t$$

$$3|x|=t$$

$$3|x|=t$$

$$4|x|=t$$

$$3|x|=t$$

$$4|x|=t$$

$$3|x|=t$$

$$4|x|=t$$

$$3|x|=t$$

$$4|x|=t$$

$$3|x|=t$$

$$4|x|=t$$

$$4|x$$

$$4 g_{x^2-181x1+5=0}$$
 Rajkanya From Bihar

$$x = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3}$$

$$x = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{5}{3}$$

$$x = \frac{1}{3} \cdot \frac{1}{3} \times \frac{5}{3} \times \frac{$$

```
Equation 9x2-18/x1 +5= 0 is: 8 the
              9302-181001+5-0
    AS
        63e1 91 x >0
          9x^2 - 18x + 5 = 0
           9x^2 - 15x - 3x + 5 = 0
            3x(3x-5)-1(3x-5)=0
               (320-1) (330-5)=0
                  1x = 1, x = 5
        21 2 < 0
Gsek
            9x2 +18x +5=0
            9x^2 + 15x + 3x + 5 = 0
             300(300+5)+1(300+5)=0
                    \int_{C} SC = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3}
        AUB = 1x = -1 , -5 , 1 , 5
   Poroduct og Roots = - 1 x (-5) x 1 x 5
Perioduct og Roots =
                     25
```

Tah-10

Q -> log N = d, + B,

109 N = d2+ B2

log = N = d3 + B3

35 Log N = 3+B, 24

53 KM K54

125 7 M 5 C 522

d1=5, d2=3, d3=2

5 1 Log N = 5+B, L6

95 4 N 236

[243 KN K729]

2 £ log N = 2+ B3 < 3

72 5 M K 73 49 5 M K 343].

=> 243 KH L343

: largest integral 2342

QUESTION [JEE Mains 2017 (9 April)]

The sum of all the real values of x satisfying the equation $2^{(x-1)(x^2+5x-50)} = 1$ is

- (A) 16
- **B** 14
- **(C)** -4
- D -!

TAH-9

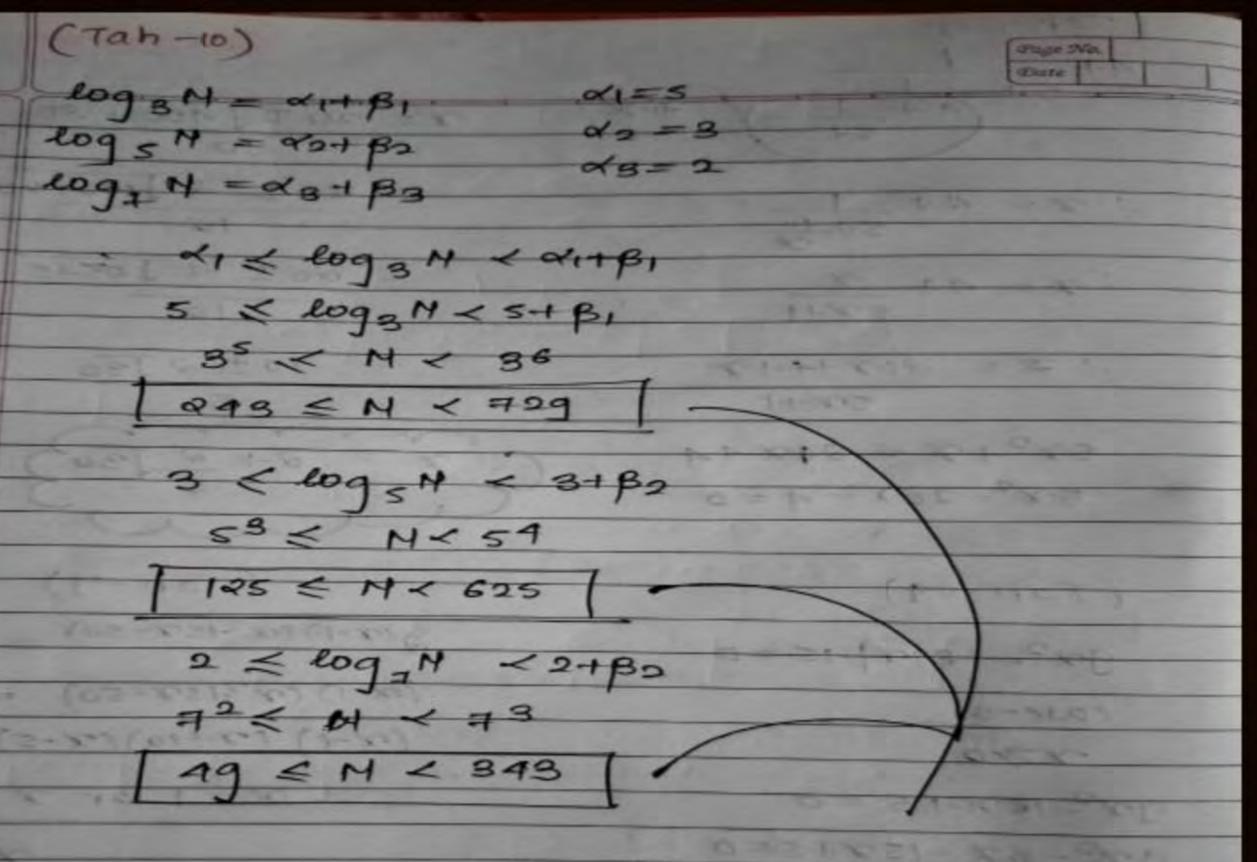
8 Sum of real values of x satisfying the eqn.

$$g(x-1)(x^2+5x-50) = 1$$
 $g(x-1)(x^2+5x-50) = 2^0$
 $(x-1)(x^2+5x-50) = 0$
 $(x-1)(x+10)(x-5) = 0$

x = 1, 5, -10

Sum = 1+5-10 = -4 Rajkanya From Bihar

QUESTION



Let $\log_3 N = \alpha_1 + \beta_1, \log_5 N = \alpha_2 + \beta_2$ and $\log_7 N = \alpha_3 + \beta_3$ where $\alpha_1, \alpha_2, \alpha_3$ are integers and $\beta_1, \beta_2, \beta_3 \in [0, 1)$.

- (i) Find the number of integral values of N if $\alpha_1 = 4$ and $\alpha_2 = 2$
- (ii) Find the longest integral values of N if $\alpha_1 = 5$ and $\alpha_2 = 3$ and $\alpha_3 = 2$

(TAH) 10) Let log_ N=a_1+B_1, log_N=a_2+B_2 and log= N = a3+B3 where as, a, a, are 9 megers
and B1, B2, B3, E [0, 1) Find the largest 9ntegoral values of Nig od = 5 and da = 3 and da = 2 $\alpha_{1} = 5$, $\alpha_{2} = 3$, $\alpha_{3} = 3$ 3 Z R Z 729 243 Z N Z 729 NEQU3, Langest 3 < 2085N < 4 125 LN L625 Value of 2 4 2097N 43 =>49 = N L343 N=342

.: 243 = N <343

Solution to Previous KTKs

QUESTION

- The common value of x satisfying $\frac{x-1}{y+2} \ge 0$ and $\frac{2x-5}{y-2} \le 1$ is
 - $(A) (2, \infty]$

- (B) (2,3] (C) $(-\infty,3]$

(D) None of these

[Ans. B]

- The set of values of x satisfying the inequality 2x 7 < 4x 2 and $-5 \le 2x + 6 < 4$ is given as

- (A) $\left[\frac{-11}{2}, \frac{-5}{2}\right]$ (B) $\left[\frac{-11}{2}, \frac{-5}{2}\right)$ (C) $\left(-\frac{5}{2}, -1\right)$
 - (D) None of these [Ans. C]

The smallest integer k satisfying the inequality $\frac{x-5}{x^2+5x-14} > 0$ is

(A) - 7

(B) -6

(C) 6

(D) None of these

[Ans. B]

- Number of integer values of x satisfying the inequality $\frac{x^2+6x-7}{|x+4|}$ < 0 is
 - (A) 6

(B) 7

(C)8

(D) None of these

QUESTION

- Set of real values of x satisfying |x + 4| = 3x 2 is given as
 - (A) $\left\{-\frac{1}{2}, 3\right\}$ (B) $\left\{-\frac{1}{2}\right\}$

 $(C) \{3\}$

- (D) None of these [Ans. C]
- The complete set of solution of 2|x + 1| + |x 3| = 4 is given by
 - (A) $\left\{\frac{5}{2}\right\}$
- (B) $\{-1\}$

(C) $\left\{-1,\frac{5}{2}\right\}$

(D) None of these [Ans. B]

- 7. The inequality $\frac{|x-3|}{x^2-5x+6} \ge 2$ is given as
 - (A) $\left[\frac{3}{2}, 2\right] \cup \left[2, \frac{5}{2}\right]$ (B) $\left[\frac{3}{2}, 2\right]$

(C) $\frac{3}{2}, \frac{5}{2}$

- (D) $\frac{3}{2}$, 2) [Ans. D]
- Values of x satisfying the equality $|x^2 + 8x + 7| = |x^2 + 4x + 4| + |4x + 3|$ for $x \in \mathbb{R}$ are
 - $(A) (-2, \infty)$

(B) $\left(\frac{3}{4}, \infty\right)$

- (C) $\{2\} \cup \left[-\frac{3}{4}, \infty\right)$ (D) $\left[-\frac{4}{3}, \infty\right)$ [Ans. C]

QUESTION

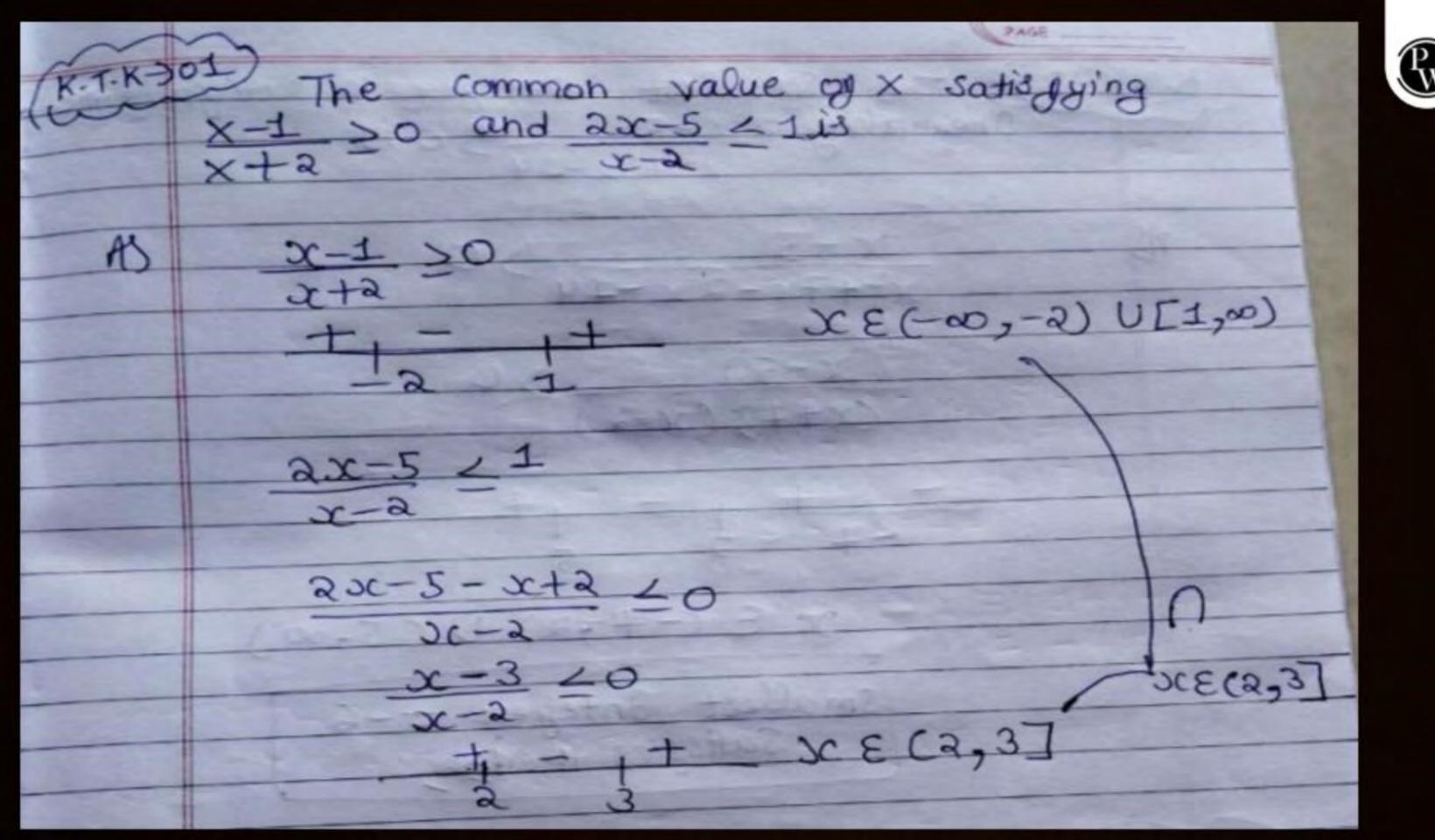
- 9. The equation $4^{\left(\frac{1}{x}-2\right)} = \frac{1}{2} \ln \sqrt{e}$ has the solution-
 - (A) -1

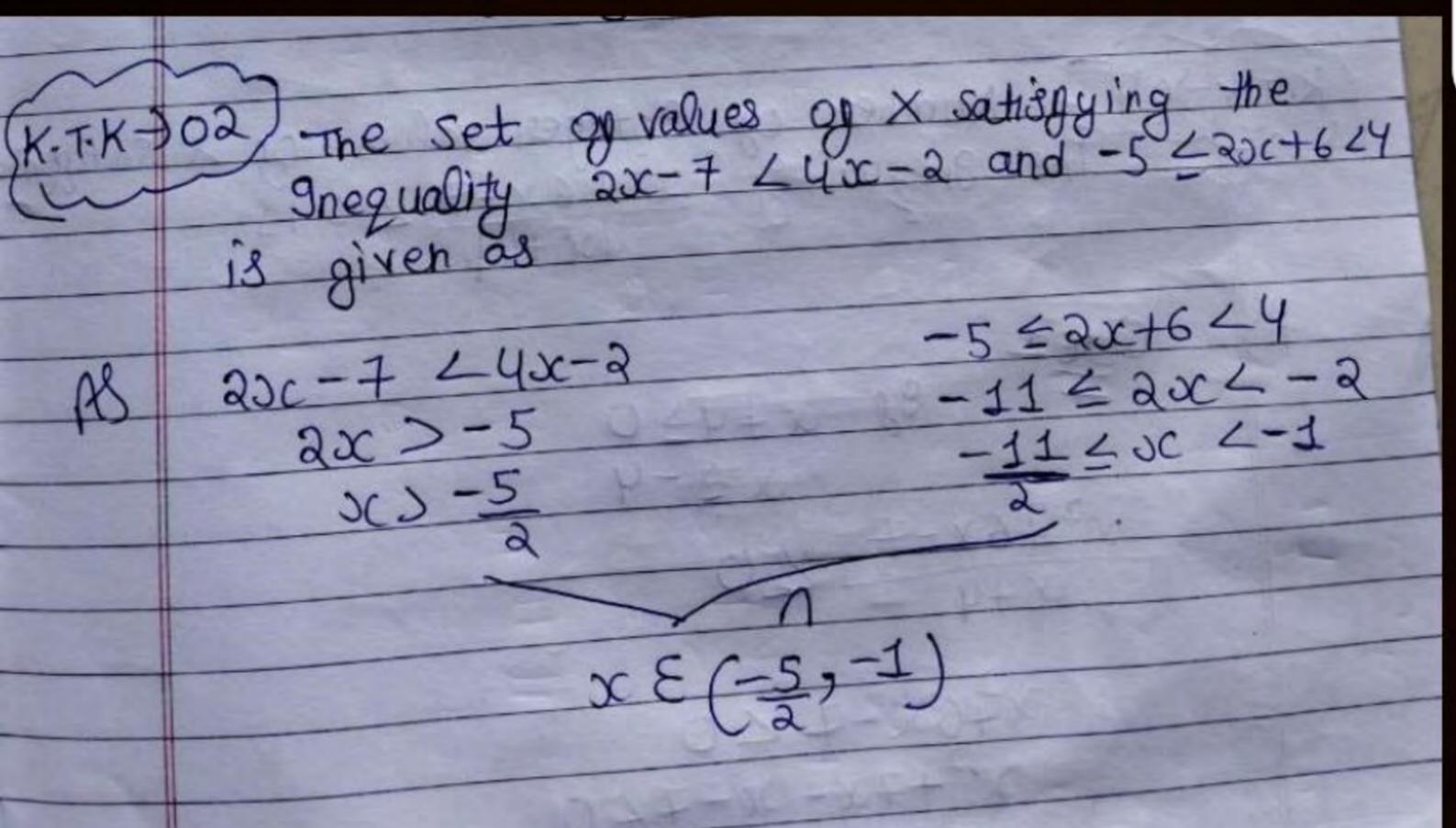
(B) 1

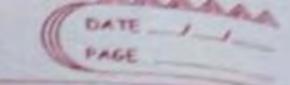
(C) 2

(D) None [Ans. B]

- 10. Solution of the equation $2^{x+2} \cdot 27^{x(x-1)} = 9$ are given by-
 - (A) $\log_2(2/3)$, 1 (B) 2, 1 $\log_2 3$ (C) –2, 1 $\log_2 3$ (D) None of these

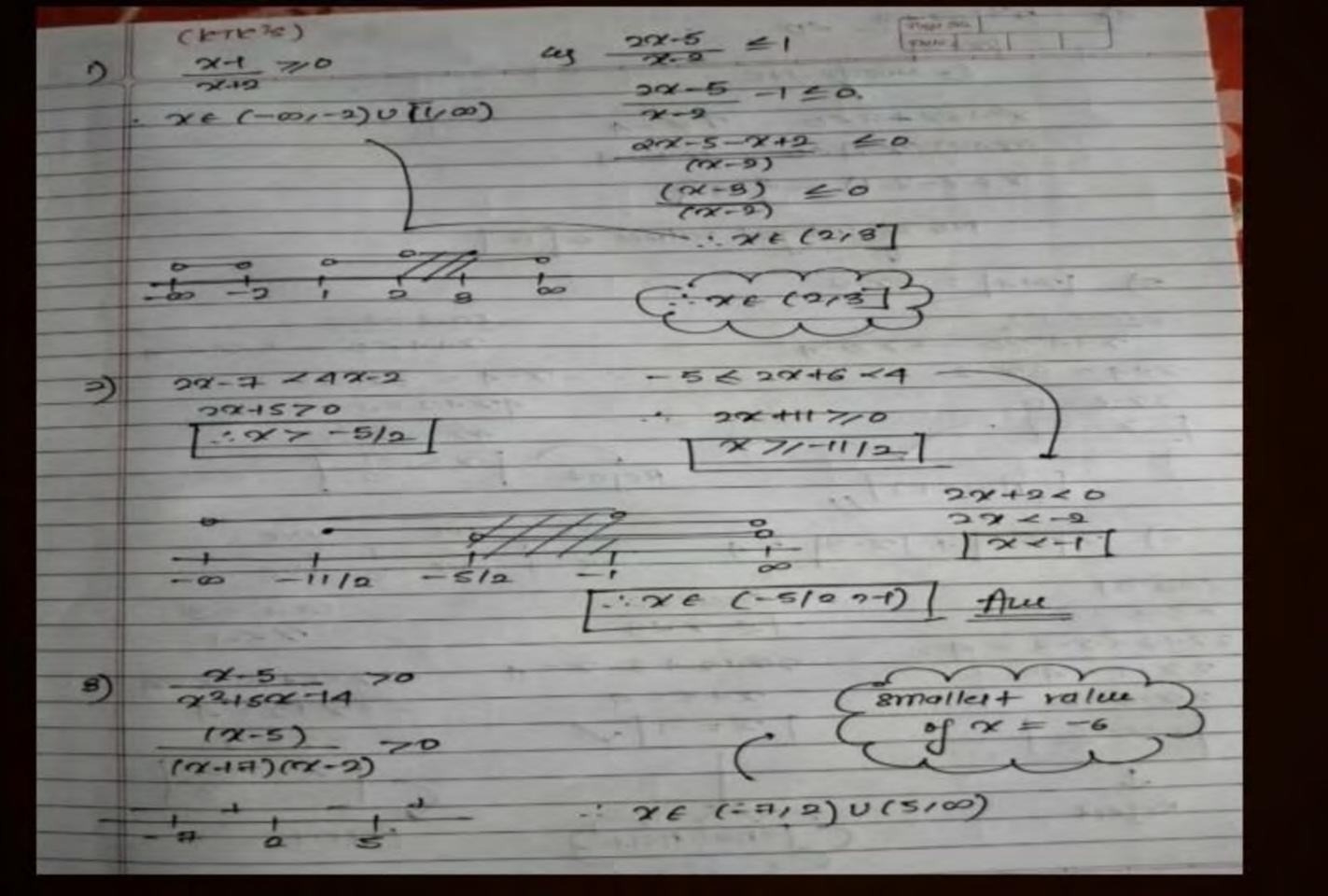

[Ans. C]

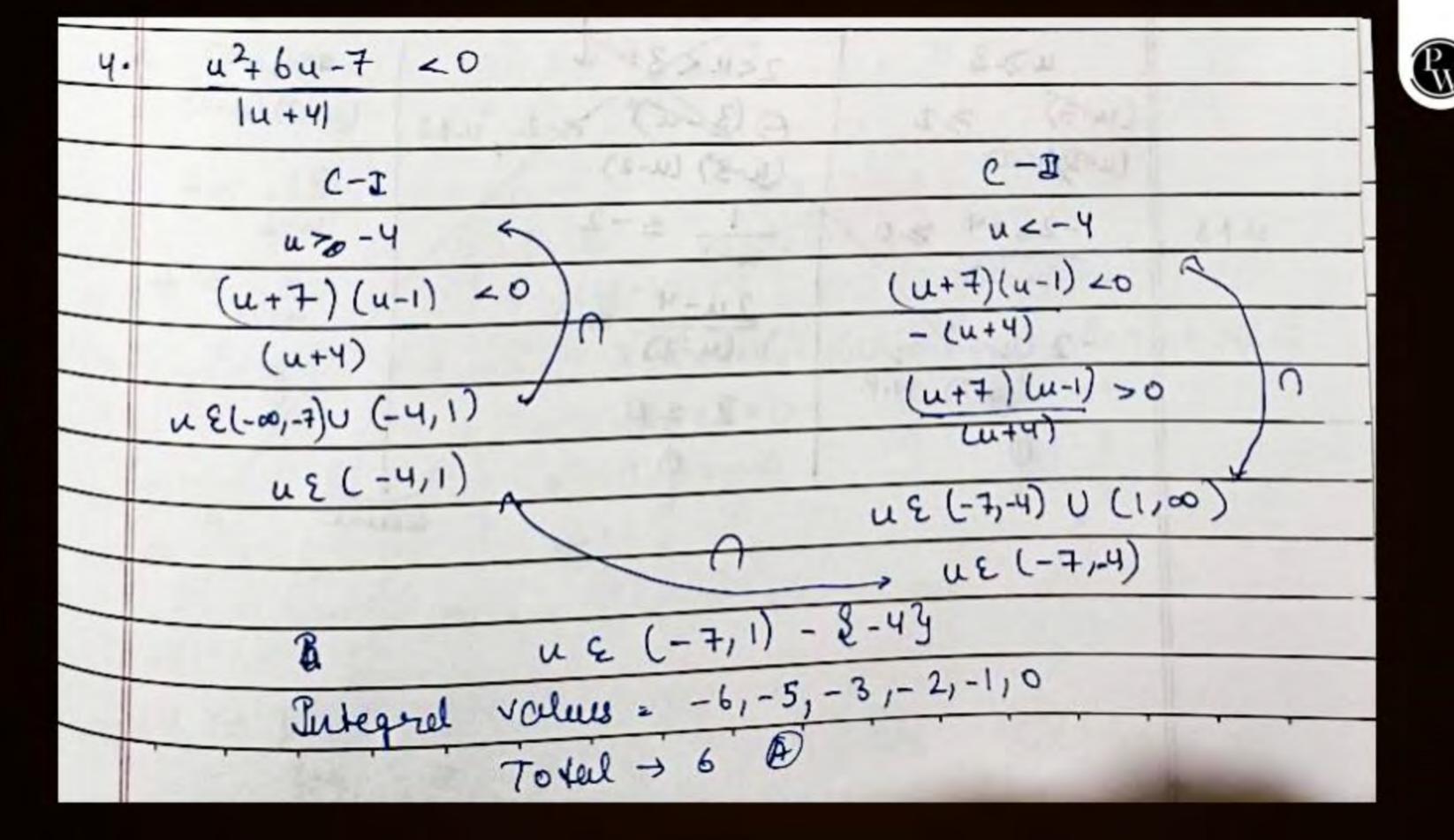

- 11. If $x^{[\log_3 x^2 + (\log_3 x)^2 10]} = \frac{1}{x^2}$ then x is equal to

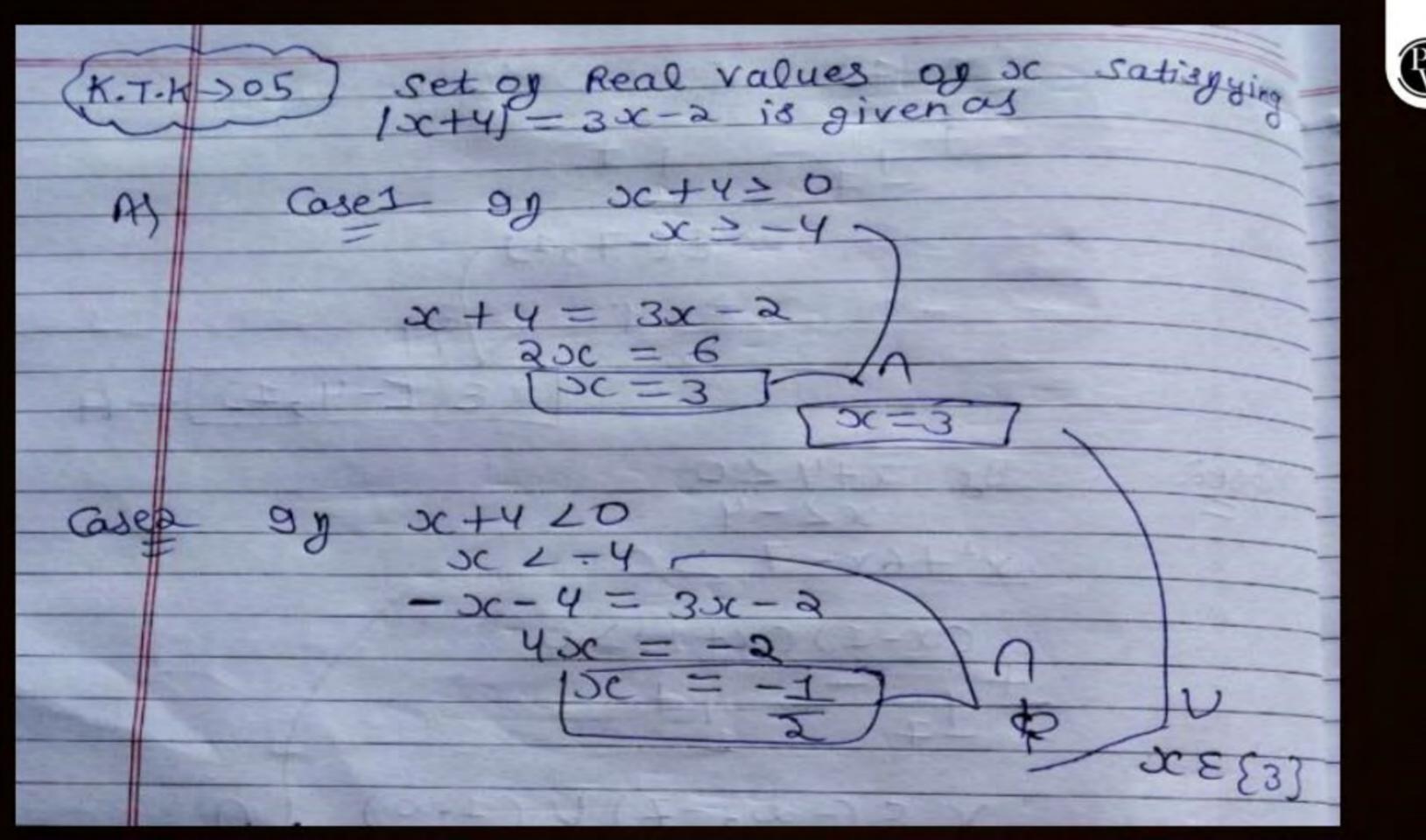

 - (A) 9, 1/9 (B) 9, 1/81 (C) 1, 1/9

- (D) 2, 2/9[Ans. B]
- 12. Complete set of values of x satisfying the inequality $x 3 < \sqrt{x^2 + 4x 5}$ is:

(A)
$$(-\infty, 5] \cup [1, \infty)$$
 (B) $(-5, 3]$ (C) $[3, 5)$







(K.T.K-)3) The Smallest Integer k sochistying the Integrality ix-5 so is 3c2+70c-20c-14 (xc-5) (x++) (x-2) XEC-7,2) UC5,00)

Smallest 9nteger =-6 Satisfies theirnes

6)
$$2 | x + 1 | + | x - 3 | = 4$$
 $| x - 1 | + | x - 3 | = 4$ $| x - 1 | + | x - 3 | = 4$ $| x - 1 | + | x - 3 | = 4$ $| x - 1 | + | x - 3 | = 4$ $| x - 1 | + | x - 3 | = 4$ $| x - 1 | + | x - 3 | = 4$ $| x - 1 | + | x - 3 | = 4$ $| x - 1 | + | x - 3 | = 4$ $| x - 1 | + | x - 3 | = 4$ $| x - 2 | = 4$

Page No. |u-31 ≥2 Date (u-2)(u-3)4>3 uc3 (u-2) (y-3 u \$ 3 - 2 >-0 ≤ -2 (u-2) 1-24+4 >0 1+24-4 <0 (u-2) 4-2

 $(2u-5) \neq 0$

2u-3 ≤ 0

u & (2, 3) X 6c2 u > 3

u & (3,12)

		Fage No.
-	1 - 1 - 2 - 2 - 2	
	(F) (n-3) -2 20	
	n2-521-16	
0.43	- mini = m-3 20	Case 2 6 31-3 CO
21.40	n = cose 1 & m - 3 ≥ 0	213C = 3
		3-11 -2 20
	A-3 - 2(5)2-571-16) ≥0	The state of the s
	265- 206 +8	n2-111-16
- 1		
	x-3-2x2 +10x1-12 20	3-x ->(82-50-46) 20
		1 315 - 2 x 1 + Q
	213 - LU -1 P	
	-2 m2 +11m -15 20	22-901+9 50
	812-587-16	N2-5 21.1 C
		(2n-3) (n-3) 60
	2n2-11n+15 60	
	72-57 + G	(81×5) (21-2)
	104511461 10	(201-3) 60 07 #3
	(54-2) (1/22) EC	(201-3) CO 07=3
	(2n-5)(n-2) (0	
	m + 5	M F P 3 9 1
-	2n-5 60 n+3	δη, € [3,2)
	81-2	
		m 22m (L3 2)
	n2 (5,2)	N3 4 N4 € [3,2)
	2 6 2	
	minny E P	(union of cases =) [3,2)40
		TS, 17

Pw

$$|x^{2}+8x+7| = |x^{2}+4x+4|+|4x+3|$$

$$|x^{2}+8x+7| = |x^{2}+4x+4|+|4x+3|$$

$$|x^{2}+6| = |a| + |b|$$

$$|x^{2}+4x+4| = |a| + |a|$$

$$|x^{2}+4x+4| = |a|$$

$$|x^{2}+4x+4|$$

$$|x^{2$$

Page No.

Date

D=(0-101) (1-1-01)

EFF - = 541

31-18-100 1- 8-1000

$$\frac{1}{4}(\dot{z}-2)=\frac{1}{2}\ln J\bar{e}$$

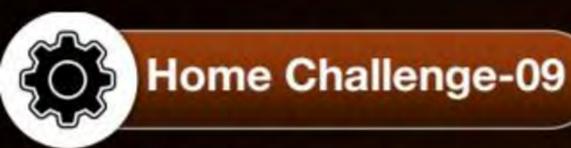
$$4^{\left(\frac{1}{x}-2\right)} = \frac{1}{2} \ln 5e$$

$$4^{\left(\frac{1}{x}-2\right)} = \tan \frac{1}{2} \ln e^{\frac{1}{2}}$$

$$4^{\left(\frac{1}{x}-2\right)} = \frac{1}{4} \ln e$$

$$4^{\left(\frac{1}{x}-2\right)} = \frac{1}{4}$$

$$\frac{1}{x}-2 = -1$$


$$\frac{1}{x}=1$$

```
\frac{\left[\log_3 u^2 + (\log_3 u)^2 - 10\right]}{(2\log_3 u + (\log_3 u)^2 - 10) \cdot \log_3 u} = \frac{1}{\log_3 u^2} \cdot \log_3 u^2 \cdot \log_3 u^2}
   2+++2-40).+=-2+ 2)2+2++3-106=-2+
            +3+2+2-8+20
        t2(t-2) +4t(t-2) + 0(t-2) 20
  (t)(t+4)(t-2) = 0
          :- tz-4,0,2
            leg, u = -4,0,2
                u=(3)-4, (3)°, 32
                                     (B)
                u = 1, 1, 9
```


-> KTK (12) complete set of values of x satisfying the inequality x-3 < Jor2+4x-5 V+2+4x-5 > x-3 x2+4x-5 =0 ~ (0x+5)(x-1) =0 g as (-00 .- 5] w [100) . [] CARC (D) 32-3-0 CORE (D) X-3 7-0 × 2-3 Jar2+42-5 > 06-3 Jx2+4x-5 > x-3 Lack -Sre (-00,0 (\$133) x+47-5 >2+9-6x CORE D U COIRE D 100 > 14 7.6 (-) (8) 7 0 > 7/2 xe (3,00) DER 1000, (A) O(B) xe (-00, -5] U[1,00)

TOTAL OIZ

If the least integral value satisfying the equation

 $\log_3 \sqrt{x^2 - 4x + 4} = 2^{\log_2(\log_3(|x|-2))}$ is α , then find the number of zeroes after decimal and before first significant digit in the number of $(\alpha)^{-4\alpha}$. [Ans. 9]

$$\log_{3} |x-2| = \log_{3}(|x|-2)$$

$$|x-2| + 2 = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |x| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0 \qquad |x|-2 > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0$$

$$|x-2| + |z| = |x| \qquad |x-2| + 0, \log_{3}(|x|-2) > 0$$

$$|x-2| + |z| = |x| = |x| = 0$$

$$|x-2| + |z| = 0$$

$$|x-2|$$

$$\lambda = (\alpha)^{-4\alpha} = 1^{-16}$$

$$\lambda = (\alpha)^{-4\alpha} =$$

